Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro gene mutation study in bacteria
Type of information:
experimental study
Adequacy of study:
supporting study
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2014
Report date:
2014

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EPA OPPTS 870.5100 - Bacterial Reverse Mutation Test (August 1998)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
Deviations:
no
Qualifier:
according to guideline
Guideline:
other: MAFF Japan, 12-Nousan-8147 Guideline Number 2-1-19-1, Test Guidelines for Agricultural Chemicals (2000)
Deviations:
no
GLP compliance:
yes
Type of assay:
bacterial reverse mutation assay

Test material

1
Chemical structure
Reference substance name:
8-chloro-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid
Cas Number:
353258-35-2
Molecular formula:
C9H4ClF3N2O2
IUPAC Name:
8-chloro-6-(trifluoromethyl)imidazo[1,2-a]pyridine-2-carboxylic acid
Specific details on test material used for the study:
Test substance: IN-QEK31-11
Lot Number: SG0312574
Purity: 98.2%

Method

Target gene:
histidine and tryptophan
Species / strain
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
Metabolic activation:
with and without
Metabolic activation system:
Aroclor 1254-induced rat liver S9 was used as the metabolic activation system
Test concentrations with justification for top dose:
The highest dose evaluated in this study was 5000 μg/plate. Additional doses of 1500, 500, 150, 15, 5.0, 1.5 μg/plate were tested for initial toxicity-mutation assay. As no toxicity was observed, the doses 50, 150, 500, 1500 and 5000 μg/plate were tested for confirmation-mutagenicity assay.
Vehicle / solvent:
Dimethyl sulfoxide
Controls
Negative solvent / vehicle controls:
yes
Remarks:
Dimethyl sulfoxide
Positive controls:
yes
Positive control substance:
9-aminoacridine
2-nitrofluorene
sodium azide
methylmethanesulfonate
other:
Evaluation criteria:
For the test substance to be evaluated as positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance.

-Data sets for tester strains TA1535 and TA1537 were judged positive if the increase in mean revertants at the peak of the dose response was greater than or equal to 3.0-times the mean vehicle control value.
-Data sets for tester strains TA98, TA100 and WP2 uvrA were judged positive if the increase in mean revertants at the peak of the dose response was greater than or equal to 2.0-times the mean vehicle control value.


An equivocal response is a biologically relevant increase in a revertant count that partially meets the criteria for evaluation as positive. This could be a dose-responsive increase that does not achieve the respective threshold cited above or a non-dose responsive increase that is equal to or greater than the respective threshold cited. A response was evaluated as negative if it was neither positive nor equivocal.

Results and discussion

Test resultsopen allclose all
Key result
Species / strain:
S. typhimurium TA 98
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1535
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1537
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
E. coli WP2 uvr A
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Positive controls validity:
valid

Applicant's summary and conclusion

Conclusions:
Negative for mutagenicity activity in S. typhimurium TA98, TA100, TA1535 and TA1537 and Escherichia coli.
Executive summary:

The test substance was tested in the Bacterial Reverse Mutation Assay using Salmonella typhimurium tester strains TA98, TA100, TA1535 and TA1537 and Escherichia coli tester strain WP2 uvrA in the presence and absence of Aroclor-induced rat liver S9 according to the guidelines OECD 471, US EPA OPPTS 870.5100, EC B.13/14 and JMAFF 2-1-19-1. The assay was performed in two phases, using the plate incorporation method. The first phase, the initial toxicity-mutation assay, was used to establish the dose-range for the confirmatory mutagenicity assay and to provide a preliminary mutagenicity evaluation. The second phase, the confirmatory mutagenicity assay, was used to evaluate and confirm the mutagenic potential of the test substance. Dosing formulations were adjusted to compensate for the purity of the test substance (98.2%), using a correction factor of 1.02.


Dimethyl sulfoxide (DMSO) was selected as the solvent of choice based on the solubility of the test substance and compatibility with the target cells. The test substance formed a clear solution in DMSO at a maximum concentration of approximately 100 mg/mL in the solubility test.


In the initial toxicity-mutation assay, the maximum dose tested was 5000 μg per plate; this dose was achieved using a concentration of 100 mg/mL and a 50 μL plating aliquot. The dose levels tested were 1.5, 5.0, 15, 50, 150, 500, 1500 and 5000 μg per plate. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. Neither precipitate nor toxicity was observed. Based on the findings of the initial toxicity-mutation assay, the maximum dose plated in the confirmatory mutagenicity assay was 5000 μg per plate.


In the confirmatory mutagenicity assay, no positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation. The dose levels tested were 50, 150, 500, 1500 and 5000 μg per plate. Neither precipitate nor toxicity was observed.


The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, the test substance did not exhibit any mutagenic responses in either the presence or absence of Aroclor-induced rat liver S9. Therefore, the test substance was concluded to be negative in this assay.