Registration Dossier
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 203-570-0 | CAS number: 108-30-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
Key value for chemical safety assessment
- Bioaccumulation potential:
- no bioaccumulation potential
Additional information
Information regarding the toxicokinetics and percutaneous absorption of cyclic anhydrides is available in the published literature.
Toxicokinetics data on hexahydrophthalic anhydride and phthalic anhydride indicate that cyclic anhydrides are readily hydrolyzed to the corresponding dicarboxylic acid, which is mainly excreted in the urine and to a lesser extent in expired air after exposure via the inhalation route. Cyclic anhydrides share structural and physicochemical properties such that succinic anhydride would also be expected to show low systemic availability, particularly following inhalation exposure. The hydrolysis product of succinic anhydride is succinic acid, an endogenous substance and food ingredient, that is expected to be effectively excreted in urine. A separate toxicokinetics study on succinic anhydride is not proposed and cannot be justified based upon animal welfare considerations.
Percutaneous absorption of cyclic anhydrides was investigated using hexahydrophthalic anhydride as the test material. Hexahydrophthalic anhydride was shown to be minimally absorbed across human skin and similar results would be expected with succinic anhydride.
Succinic anhydride is structurally similar to maleic acid and it plays a biochemical role in the citrus acid cycle, where succinic anhydride is catalysed by succinate dehydrogenase, releasing electrons to the electron transport chain.
Succinic acid can also be oxidised to fumaric acid
The participation of malate, fumarate and succinate in the Kreb's cycle, the relative interchangeability of maleic and succinic acids via hydrolysis/hydrogenation and the derivation of succinic anhydride from maleic acid and anhydride, indicate it is reasonable to read-across from one form to another without anticipating large changes in toxicity profile.
The most common site of reactivity of cyclic anhydrides in biological systems is the initial site of contact. Like other cyclic acid anhydrides, succinic anhydride is readily hydrolyzed to a dicarboxylic acid (WHO, 2009). Dicarboxylic acids are known irritants and the formation of the acid is the basis for skin and eye irritation seen with succinic and other anhydrides (WHO, 2009).
In addition, succinic acid is ubiquitous in prokaryotic and eukaryotic cells. Succinate is a substrate in the Krebs (citric acid) cycle and is metabolized by succinate dehydrogenase to fumarate, resulting in the generation of adenosine triphosphate. Succinic acid is an approved food additive in the EU (E 363) and is naturally found in beer and wine.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

Route: .live1