Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 205-599-4 | CAS number: 143-33-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Cyanide compounds are acutelyThe presence in human populations of data on cyanide and thiocyanate levels is critical in establishing safe levels of cyanide, especially for long-term exposures. Cliff et al (1986) found that levels of 250 μmol SCN-/l serum (14.5 μg SCN-/ml) did not lead to an increased incidence of goitre in a cassava eating population that was not iodine deficient; iodine deficiency exacerbated thyroid toxicity. The cassava-eating population by Cliff et al., (1986) included 276 individuals (subset of 27 for some measurements) between 5 and 60 years old that had lived on this staple diet all their life (control group aged 19 – 85). Similar findings were reported by Banerjee (1997) for electroplating workers in which serum concentrations of 316 μmol/l (18 μg SCN-/ml) did not lead to goitre. Both of the latter populations had slight changes in thyroid hormone levels that can be considered as an adaptive response. From human studies by Knudsen and Barrere, et.al. (2000), a nutritional iodine deficiency increases the sensitivity of the thyroid gland to the goitrogenic effects of cyanide. Due to background variations in co-exposure to cyanogenic sources (e.g., environmental (combustion), dietary (cyanogenic foods) and habitual (i.e. smoking)) and levels of dietary iodine, it is not possible to distinguish precisely the effects of exogenous CN- on thyroid hormone levels.
A level of 15 μg SCN-/ml can be used as a starting point to derive a safe concentration of cyanide for humans. Sensitive sub-populations would include individuals with insufficient dietary iodine, insufficient thiosulphate supply (e.g., in the case of malnutrition) or impaired renal function. Whereas the human studies relied upon for development of the critical value typically included several hundred to several thousand individuals from as young as 5 to 80 years old, this value is protective for sensitive individuals in the general population. See discussion on DNEL derivation.
Additional information
Cyanide compounds are acutely toxic by the oral, dermal and inhalation routes. This is recognized in the cyanides industry, based on accidental occupational exposures and intentional suicide
attempts. Acute toxicity is due to binding of cyanide with the iron in cytochrome oxidase, resulting in inhibition of cellular respiration. Toxicity from repeated dose exposure is seen as either acute toxicity or thyroid toxicity. The primaryin vivo metabolic pathway for cyanide is conversion into thiocyanate, catalysed by the mitochondrial enzyme rhodanese, and excretion into urine. Thiocyanate is a competitive inhibitor of iodine uptake by the thyroid gland; iodine deficiency leads to goitere of the thyroid gland.
The available literature, although limited, indicates that chronic occupational exposure to cyanides in certain industries (silver reclamation and electroplating) is linked to thyroid enlargement (goitre) and a wide range of subjective symptoms. The study of El Ghawabi et al (1975) suggests initally that these clinical effects are consistent with relatively low occupational exposures; however, these findings are more likely due to higher chronic levels prior to generation of quantitative air monitoring data, and this study cannot be used as the basis for establishing an occupational NOAEL.Foods derived from cassava roots and leaves have been consumed on a regular basis by over 300 million people throughout the tropics of Africa, Central and South America, Southern Asia, Micronesia and Melanesia. Variation in food preparation techniques has contributed to variable levels of residual dietary cyanide and resultant chronic cyanide intoxication in these regions. The published literature includes numerous epidemiological and cross-sectional studies on the health effects of dietary cyanide. In the study of Jackson (1988), it was shown that dietary intake of up to 2 mg CN‾/kg bw/d in humans did not result in any effect on the thyroid, and are in accord with the serum levels of thiocyanate (250 µmol/l) and lack of overt hypothyroidism reported by Cliff et al (1986) for a rural population in Mozambique with adequate iodide intake. Thiocyanate levels from these populations and from patients administered potassium thiocyanate (Barker et al, 1950, Barker 1951) provide a basis for establishing no-effect levels in humans without the need to extrapolate from animals studies.
Adequacy of dietary iodide is a key parameter to be assessed in the design, conduct and interpretation of studies with cyanides. From the ECETOC review it is apparent that the NOAEL for goitrogenic effects in humans receiving adequate iodide is probably in excess of 2 mg CN‾/kgbw/d.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.