Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 202-851-5 | CAS number: 100-42-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Aquatic bioaccumulation
It is generally assumed that non-ionised organic substances with a log Kow below 3 are not significantly bioaccumulative (refer Section R7c of the ECHA Guidance on information requirements). Styrene has an estimated log Kow of 2.89 (a very close default value used in EPI Suite (v.4.00) software for styrene is log Kow=2.95).
The Bioconcentration Factor (BCF), Bioaccumulation factor (BAF) as well as Biotransformation Rate in fish were estimated by the BCFBAF software using the Arnot-Gobas method. This method model estimates steady-state BCF (L/kg) and BAF (L/kg) values for non-ionic organic chemicals in three general trophic levels of fish (i. e. lower, middle and upper) in temperate environments (default temperature is 10oC).
The estimated log Kow for styrene is 2.89 which is below the cut-off value of 3 for bioaccumulation. Moreover, in the GHS classification system the cut-off value of log Kow for bioaccumulation is 4.
Biotransformation Half-Life (normalized to 10 g fish at 15oC) of 0.501 days was estimated for styrene in fish.
In addition, estimated BCF/BAF values of styrene in fish (about 41 L/ kg wet-wt) are well below the cut-off value of 500 for bioconcentration potential in aquatic organisms.
Generally, a BCF in fish of ≥ 500 is indicative of the potential to bioconcentrate for classification purposes in accordance with CLP/GHS criteria. The BCF/BAF values estimated for styrene are well below the cut-off values for bioaccumulation. Therefore, styrene is not likely to bioaccumulate in aquatic organisms.
Terrestrial bioaccumulation
Tests on terrestrial bioaccumulation are not required to be performed under Annexes VII to X of REACH.
No experimental data on terrestrial bioaccumulation of styrene were located or performed by the registrant. In addition, no QSAR model estimation was performed for terrestrial bioaccumulation.
By applying the Tier 1 assessment and, in particular, taken into account the structure of styrene (i. e. a non-ionised organic substance), its physico-chemical properties (i. e. log Kow <3) and environmental fate data suggesting that this chemical will not adsorb to soil particles (logKoc = 2.56 -2.65) and will likely to volatize from soil, it is considered that the substance is unlikely to be significantly bioaccumulative.Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.