Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 812-724-1 | CAS number: 106705-37-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
On the basis of ecotoxicity studies with the substance itself and based on aquatic toxicity data of its moieties, i.e. strontium and neodecanoic acid, strontium neodecanoate appears to have a low potential for short- and long-term toxicity to aquatic organisms.
Reliable acute aquatic toxicity data of strontium neodecanoate are available from GLP-conform guideline studies for algae, daphnia, fish and microorganisms. Respective EC/LC50 values are well above respective test limits of 100 mg/L, i.e., 96-h LC50 for fish (Danio rerio): >299.7 mg/L, 48-h EC50 for immobilisation of Daphnia magna: >299.7 mg/L, 72-h EC50 for algal growth rate (Pseudokirchneriella subcapitata): >250 mg/L, 3-h EC50 for the respiration inhibition of activated sludge: >871.3 mg/L. Therefore, strontium neodecanoate has a low potential for acute toxicity to aquatic organisms.
Reliable chronic aquatic toxicity data of strontium neodecanoate are available from GLP-conform guideline studies for algae and microorganisms. Respective EC10 values are well above 100 mg/L, i.e., 72-h EC10 for algal growth rate (Pseudokirchneriella subcapitata): 129 mg/L, 3-h EC10 for the respiration inhibition of activated sludge: >871.3 mg/L. Thus, strontium neodecanoate has a low potential for chronic toxicity to aquatic algae and microorganisms.
Additional information
Read-across approach
Metal carboxylates are substances consisting of a metal and a carboxylic acid. Based on the solubility of strontium neodecanoate in water (8.47 g dissolved Sr/L at pH 8.4 corresponding to 45.07 g strontium neodecanoate/L), a complete dissociation of strontium neodecanoate resulting in strontium and neodecanoate ions may be assumed under environmental conditions. The respective dissociation is reversible and the ratio of the salt /dissociated ions is dependent on the metal-ligand dissociation constant of the salt, the composition of the solution and its pH.
A metal-ligand complexation constant of strontium neodecanoate could not be identified. Data for alkaline earth metals appear to be generally limited. However, alkaline earth metals tend to form complexes with ionic character as a result of their low electronegativity. Further, the ionic bonding of alkaline earth metals is typically described as resulting from electrostatic attractive forces between opposite charges, which increase with decreasing separation distance between ions. Based on an analysis by Carbonaro & Di Toro (2007) of monodentate binding of strontium to negatively-charged oxygen donor atoms, including carboxylic functional groups, monodentate ligands such as neodecanoate are not expected to bind strongly with strontium. Accordingly, protons will always out-compete strontium ions for complexation of monodentate ligands given equal activities of free strontium and hydrogen ions. The metal-ligand formation constants (log KML) of strontium with other carboxylic acids, i.e. acetic, propanoic and butanoic acid, ranging from 0.78 to 0.89, further point to a low strength of the monodentate bond between carboxyl groups and strontium.
Thus, it may reasonably be assumed that based on the estimated strontium-neodecanoate formation constant, the respective behaviour of the dissociated strontium cations and neodecanoate anions in the environment determine the fate of strontium neodecanoate upon dissolution with regard to (bio)degradation, bioaccumulation, partitioning resulting in a different relative distribution in environmental compartments (water, air, sediment and soil) and subsequently its ecotoxicological potential (or the lack thereof).
In the assessment of the aquatic toxicity of strontium neodecanoate, substance-specific data are considered. Further, read-across to data for neodecanoic acid (CAS 26896-20-8; EC 248-093-9) and soluble strontium substances is applied since the ions of strontium neodecanoate determine the enviromental fate and toxicity.
Strontium
Reliable acute aquatic toxicity data of strontium are available for daphnia and fish. The 48-h LC50 value for immobilisation of Daphnia magna amounts to 125 mg strontium/L. The acute toxicity of strontium as measured by mortality of striped bass (Morone saxatilis) was evaluated in saltwater resulting in a 96-h LC50 of >92.8 mg strontium/L. Further supporting acute toxicity data for freshwater invertebrates and fresh- and saltwater fish as well as freshwater algae toxicity data indicate that respective EC/LC50 values are well above 50 mg/L and the majority are above the test limit of 100 mg/L. Thus, strontium appears to have a low potential for acute toxicity to freshwater algae and invertebrates as well as fresh- and saltwater fish.
Reliable chronic aquatic toxicity data of strontium are available for daphnia. The respective 21-d NOEC for reproduction of Daphnia magna amounts to 21 mg strontium/L. Supporting chronic toxicity data for freshwater invertebrates and algae indicate, however, that respective long-term EC values are well above 1 mg/L. Thus, strontium appears to have a low potential for long-term toxicity to freshwater algae and invertebrates.
Neodecanoic acid
For algae, daphnia and fish reliable acute toxicity data are available. Respective EC/LC50 values are above the respective test limits of 100 mg/L, i.e. 96 -h LL50 for fish (Oncorhynchus mykiss): >100 mg neodecanoic acid/L, 48 -h EL50 for Daphina magna: >1000 mg neodecanoic acid/L, 72 -h EL50 for algal growth rate (Pseudokirchneriella subcapitata): >100 mg neodecanoic acid/L. Therefore, neodecanoic acid has a low potential for acute toxicity to aquatic organisms.
Reliable chronic toxicity data are available for fish and daphnia. Furthermore, reliable supporting information is available for microorganisms. QSAR based NOEC values for fish and Daphnia are 1.1 mg/L. Reliable additional information are available for fish, daphnia and microorganisms, i.e. 14-d NOEC for fish (Oncorhynchus mykiss): >2.22 mg/L, 7-d NOEC for reproduction of Cerodaphnia dubia: 3.4 mg/L, 4-h NOEC for the nitrification rate of Nitrosomonas sp.: >100 mg/L. Thus, based on read-across, neodecanoic acid is assumed to have a low potential for chronic toxicity to aquatic organisms.
Reference:
Carbonaro RF & Di Toro DM (2007) Linear free energy relationships for metal–ligand complexation: Monodentate binding to negatively-charged oxygen donor atoms. Geochimica et Cosmochimica Acta 71: 3958–3968.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.