Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 284-892-9 | CAS number: 84989-04-8 The fraction of tar acid rich in 3- and 4-methylphenol, recovered by distillation of low-temperature coal tar crude tar acids.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Biodegradation in water and sediment: simulation tests
Administrative data
Link to relevant study record(s)
Description of key information
All studies available, simulating biodegradation under natural conditions, revealed biodegradation of the cresol isomers. m-Cresol and p-cresol were biodegraded under aerobic and anaerobic conditions in water as well as in different sediment types. o-Cresol was degraded by phenol acclimated activated sludge.
Key value for chemical safety assessment
Additional information
Although the substances are readily biodegradable and no biodegradation simulation test has to be performed for sediments, there are studies available on biodegradation in sediments.
m-cresol and p-cresol
p-Cresol and m-cresol are biodegraded in aquifer sediment under anaerobic conditions (Smolenski and Suflita 1987) and by anoxic river sediment within 3-4 weeks (Kaminski et al., 1990).
p-Cresol was completely biodegraded within 4 weeks in a freshwater sediment (Haeggblom et al., 1990). p-Cresol was rapidly biodegraded (ca. 90% after 70 h) in water, water-sediment-suspensions, and by intact sediment-water cores (eco-cores) of marine, estuarine, and freshwater origin. No lag-phase was observed. Pre-exposure did not accelerate degradation (Van Veld and Spain 1983, Spain and Van Veld 1983).
o-cresol
The o-cresol metabolic pathway was examined by Masunaga (1986) using phenol-adapted activated sludge. About 90% of o-cresol is degraded after 24 hours and the metabolites also diminish significantly with time. The primary metabolic step is the ring-hydroxylation yielding isomers of dihydroxytoluene (3-methylcatechol, 4-methylresorcinol, methylhydroquinone). Secondary degradation products are formed either by further hydroxylation yielding trihydroxy and tetrahydroxy-toluenes or by cleavage of the aromatic ring system.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.