Registration Dossier

Diss Factsheets

Administrative data

Endpoint:
vapour pressure
Type of information:
experimental study
Adequacy of study:
key study
Study period:
Experimental phase: 05 July 2016 to 17 August 2016. Report issued: 06 December 2016.
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2016
Report date:
2016

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
OECD Guideline 104 (Vapour Pressure Curve)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method A.4 (Vapour Pressure)
Deviations:
no
GLP compliance:
yes (incl. QA statement)
Type of method:
effusion method: vapour pressure balance

Test material

Constituent 1
Chemical structure
Reference substance name:
Ethylidynetrimethanol
EC Number:
201-063-9
EC Name:
Ethylidynetrimethanol
Cas Number:
77-85-0
Molecular formula:
C5H12O3
IUPAC Name:
2-(hydroxymethyl)-2-methylpropane-1,3-diol
Test material form:
solid: granular

Results and discussion

Vapour pressure
Key result
Temp.:
ca. 25 °C
Vapour pressure:
ca. 0.003 Pa
Transition / decomposition
Key result
Transition / decomposition:
no

Any other information on results incl. tables

A total of 6 runs were completed for the main sequence. Equilibrium with regard to vapour pressure was assessed to have been reached over the final 5 runs. Thus the final 5 runs have been used to calculate the definitive vapour pressure value for the test item. The results may represent rounded-off values obtained by calculations based on the exact raw data.

Recorded temperatures, mass differences and the resulting calculated values of vapour pressure are shown in the following tables:

Run 2

Table 1 – Run 2 Vapour Pressure Data  

 

Temperature

(ºC)

 

Temperature

(K)

 

Reciprocal Temperature

(K-1 )

 

Mass Difference

(µg)

 

Mass Difference

(kg)

 

Vapour Pressure

(Pa)

 

 

Log10Vp

35

308.15

0.003245173

12.03

1.203E-08

0.016700722

-1.777264751

36

309.15

0.003234676

13.94

1.394E-08

0.019352291

-1.713267605

37

310.15

0.003224246

13.88

1.388E-08

0.019268996

-1.715140913

38

311.15

0.003213884

16.18

1.618E-08

0.022461985

-1.648551861

39

312.15

0.003203588

18.31

1.831E-08

0.025418971

-1.594842034

40

313.15

0.003193358

23.81

2.381E-08

0.033054380

-1.480770983

41

314.15

0.003183193

26.43

2.643E-08

0.036691611

-1.435433216

42

315.15

0.003173092

31.63

3.163E-08

0.043910544

-1.357431187

43

316.15

0.003163056

36.12

3.612E-08

0.050143814

-1.299782637

44

317.15

0.003153082

39.54

3.954E-08

0.054891650

-1.260493714

45

318.15

0.003143171

49.34

4.934E-08

0.068496561

-1.164331234

 

A plot of Log10 (vapour pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 2 gives the following statistical data using an unweighted least squares treatment.

Slope:                                                      -6.11 x 103

Standard error in slope:                                 255

Intercept:                                                       18.0

Standard error in intercept:                           0.814

The results obtained indicate the following vapour pressure relationship: Log10 (Vp (Pa)) = -6.11 x 103/ temp (K) + 18.0

The above yields a vapour pressure (Pa) at 298.15 K with a common logarithm of -2.48.

Run 3

Table 2 – Run 3 Vapour Pressure Data

 

Temperature

(ºC)

 

Temperature

(K)

 

Reciprocal

Temperature 

(K-1)

 

Mass

Difference

(µg)

 

Mass

Difference

(kg)

 

Vapour

Pressure

(Pa)

 

 

Log10Vp

35

308.15

0.003245173

11.63

1.163E-08

0.016145420

-1.791950664

36

309.15

0.003234676

12.48

1.248E-08

0.017325437

-1.761315793

37

310.15

0.003224246

13.99

1.399E-08

0.019421704

-1.711712664

38

311.15

0.003213884

16.34

1.634E-08

0.022684106

-1.644278327

39

312.15

0.003203588

18.27

1.827E-08

0.025363441

-1.595791831

40

313.15

0.003193358

22.51

2.251E-08

0.031249647

-1.505154884

41

314.15

0.003183193

24.40

2.440E-08

0.033873451

-1.470140552

42

315.15

0.003173092

30.62

3.062E-08

0.042508405

-1.371525192

43

316.15

0.003163056

33.51

3.351E-08

0.046520465

-1.332355951

44

317.15

0.003153082

38.02

3.802E-08

0.052781501

-1.277518266

45

318.15

0.003143171

47.88

4.788E-08

0.066469707

-1.177376237

A plot of Log10 (vapour pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 3 gives the following statistical data using an unweighted least squares treatment.

Slope:                                                      -6.07 x 103

Standard error in slope:                                187

Intercept:                                                       17.9

Standard error in intercept:                           0.599

The results obtained indicate the following vapour pressure relationship: Log10 (Vp (Pa)) = -6.07 x 103/temp (K) + 17.9

The above yields a vapour pressure (Pa) at 298.15 K with a common logarithm of -2.49.

Run 4

Table 3 – Run 4 Vapour Pressure Data

 

Temperature

(ºC)

 

Temperature

(K)

 

Reciprocal

Temperature 

(K-1)

 

Mass Difference(µg)

 

Mass Difference(kg)

 

Vapour Pressure(Pa)

 

 

Log10Vp

35

308.15

0.003245173

11.99

1.199E-08

0.016645192

-1.778711196

36

309.15

0.003234676

12.20

1.220E-08

0.016936726

-1.771170548

37

310.15

0.003224246

12.06

1.206E-08

0.016742370

-1.776183071

38

311.15

0.003213884

14.74

1.474E-08

0.020462896

-1.689032895

39

312.15

0.003203588

16.88

1.688E-08

0.023433765

-1.630157936

40

313.15

0.003193358

22.65

2.265E-08

0.031444003

-1.502462172

41

314.15

0.003183193

24.59

2.459E-08

0.034137220

-1.466771850

42

315.15

0.003173092

29.76

2.976E-08

0.041314504

-1.383897452

43

316.15

0.003163056

32.23

3.223E-08

0.044743497

-1.349270073

44

317.15

0.003153082

40.02

4.002E-08

0.055558013

-1.255253294

45

318.15

0.003143171

44.93

4.493E-08

0.062374351

-1.204993960

A plot of Log10 (vapour pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 4 gives the following statistical data using an unweighted least squares treatment.

Slope:                                                        -6.22 x 103

Standard error in slope:                                351

Intercept:                                                     18.3

Standard error in intercept:                           1.12

The results obtained indicate the following vapor pressure relationship: Log10 (Vp (Pa)) = -6.22 x 103/temp (K) + 18.3

The above yields a vapour pressure (Pa) at 298.15 K with a common logarithm of -2.53.

Run 5

 

Table 4 – Run 5 Vapour Pressure Data 

 

Temperature

(ºC)

 

Temperature

(K)

 

Reciprocal

Temperature 

(K-1)

 

Mass Difference(µg)

 

Mass Difference(kg)

 

Vapour Pressure(Pa)

 

 

Log10Vp

35

308.15

0.003245173

11.57

1.157E-08

0.016062124

-1.794197020

36

309.15

0.003234676

10.78

1.078E-08

0.014965402

-1.824911618

37

310.15

0.003224246

13.64

1.364E-08

0.018935815

-1.722716008

38

311.15

0.003213884

14.84

1.484E-08

0.020601722

-1.686096478

39

312.15

0.003203588

18.39

1.839E-08

0.025530031

-1.592948649

40

313.15

0.003193358

20.03

2.003E-08

0.027806772

-1.555849429

41

314.15

0.003183193

24.32

2.432E-08

0.033762391

-1.471566808

42

315.15

0.003173092

27.18

2.718E-08

0.037732803

-1.423280926

43

316.15

0.003163056

32.38

3.238E-08

0.044951736

-1.347253534

44

317.15

0.003153082

35.36

3.536E-08

0.049088739

-1.309018122

45

318.15

0.003143171

42.23

4.223E-08

0.058626059

-1.231909297

A plot of Log10 (vapour pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 5 gives the following statistical data using an unweighted least squares treatment.

Slope:                                                        -5.92 x 103

Standard error in slope:                                236

Intercept:                                                       17.4

Standard error in intercept:                           0.753

The results obtained indicate the following vapour pressure relationship: Log10 (Vp (Pa)) = -5.92 x 103/temp (K) + 17.4

The above yields a vapour pressure (Pa) at 298.15 K with a common logarithm of -2.49.

Run 6

 

Table 5 – Run 6 Vapour Pressure Data

 

Temperature

(ºC)

 

Temperature

(K)

 

Reciprocal

Temperature 

(K-1)

 

Mass Difference(µg)

 

Mass Difference(kg)

 

Vapor Pressure(Pa)

 

 

Log10Vp

35

308.15

0.003245173

10.62

1.062E-08

0.014743281

-1.831405862

36

309.15

0.003234676

12.50

1.250E-08

0.017353202

-1.760620366

37

310.15

0.003224246

13.35

1.335E-08

0.018533220

-1.732049113

38

311.15

0.003213884

15.83

1.583E-08

0.021976096

-1.658049464

39

312.15

0.003203588

16.50

1.650E-08

0.022906227

-1.640046435

40

313.15

0.003193358

20.20

2.020E-08

0.028042775

-1.552179009

41

314.15

0.003183193

24.01

2.401E-08

0.033332031

-1.477138219

42

315.15

0.003173092

28.47

2.847E-08

0.039523654

-1.403142912

43

316.15

0.003163056

32.79

3.279E-08

0.045520921

-1.341788962

44

317.15

0.003153082

37.30

3.730E-08

0.051781956

-1.285821547

45

318.15

0.003143171

41.99

4.199E-08

0.058292878

-1.234384504

A plot of Log10 (vapour pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 6 gives the following statistical data using an unweighted least squares treatment.

Slope:                                                        -5.99 x 103

Standard error in slope:                                180

Intercept:                                                       17.6

Standard error in intercept:                           0.575

The results obtained indicate the following vapour pressure relationship: Log10 (Vp (Pa)) = -5.99x 103/temp (K) + 17.6

The above yields a vapour pressure (Pa) at 298.15 K with a common logarithm of -2.50.


Applicant's summary and conclusion

Conclusions:
The vapour pressure of the test item has been determined to be 3.2 x 10-3 Pa at 25 °C using the vapour pressure balance method.
Executive summary:

Introduction

The vapour presure of trimethylolethane was determined using a procedure designed to be compatible with Method A4 Vapour Pressure of Commission Regulation (EC) No 440/2008 of 30 May 2008 and Method 104 of the OECD Guidelines for Testing of Chemicals, 23 March 2006.

Method

The vapour pressure was determined using a vapour pressure balance. The temperature of the sample was controlled electronically. The mass and temperature readings were recorded automatically into a computer file.

Conclusion

The vapour pressure of the trimethylolethane has been determined to be less than 3.2 x 10-3 Pa at 25 ºC using the vapour pressure balance method.