Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 233-135-0 | CAS number: 10043-01-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Hydrolysis
Administrative data
Link to relevant study record(s)
Description of key information
Hydrolysis is an important factor influencing aluminium bioavailability in aquifers with pH, DOC and the presence of other ions involved in determining the specific degree of ligand formation and final in Aquo aluminium concentration present in the system. The calculation of a hydrolytic half life is not useful as regardless of pH, temperature or other parameters present, a specific equilibrium is ultimately reached between aquo to total aluminium concentrations.
Key value for chemical safety assessment
Additional information
The speciation of Aluminium is pH dependent. At low pH values, dissolved aluminum is present mainly in the aquo form (Al3+). Aluminum hydrolyses increasingly with increased pH and is poorly soluble in the neutral pH range between 6.0 and 8.0 due to the formation of less soluble hydroxide complexes (e.g., Al(OH)2+, Al(OH)2+). Its solubility is at a minimum near pH6.5 at 20°C and then increases as the anion, Al(OH)4–becomes more abundant.
In the presence of complexing ligands and under acidic (pH < 6) and alkaline (pH > 8) conditions, aluminium solubility is enhanced.
At 20°C and pH < 5.7, aluminum is present primarily in the formsAl3+ and Al(OH)2+. In the pH range 5.7 to 6.7, aluminum hydroxide species dominate, including Al(OH)2+ and Al(OH)2+, and then Al(OH)3. At a pH of approximately 6.5, Al(OH)3 tends to predominate over the other species. In this range, aluminium solubility is low. At pH > 6.7, Al(OH)4–becomes the dominant species.
Due to its size fluoride readily substitutes for OH- and has a strong affinity for Al under acidic conditions although this is limited by the relative low abundance of fluoride in the environment. Aluminium-hydroxide complexes predominate over aluminium-fluoride complexes under alkaline conditions.
Sulphate also complexes with aluminium under alkaline conditions (>pH 6). Nevertheless aluminium-sulphate complexes were found to represent only 5% of monomeric aluminium in lake studies. While all aluminium species described are present simultaneously at any pH value the relative proportion of these species will depend upon pH in aquatic systems.
Aluminium-organic complexes were a major component of monomeric Al over a wide range of pH from 4.3 to 7.0 and were found to positively correlate with increasing DOC concentrations as pH decreased.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.