Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 233-135-0 | CAS number: 10043-01-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Health surveillance data
Administrative data
- Endpoint:
- health surveillance data
- Type of information:
- experimental study
- Adequacy of study:
- supporting study
- Study period:
- No data
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Study well documented, meets generally accepted scientific principles and acceptable for assessment. Information indicative for toxicokinetic section.
Cross-referenceopen allclose all
- Reason / purpose for cross-reference:
- reference to same study
- Reason / purpose for cross-reference:
- reference to other study
Data source
Reference
- Reference Type:
- publication
- Title:
- Unnamed
- Year:
- 2 008
Materials and methods
- Study type:
- biological exposure monitoring
- Endpoint addressed:
- basic toxicokinetics
- Principles of method if other than guideline:
- Study was conducted to examine the aluminum exposure and kinetics of aluminum in a group of shipyard workers engaged in welding and grinding when making ship hulls of aluminum and to compare these data with those of workers exposed to aluminum sulfate in aluminum sulfate production. Biological behavior of the aluminum species in the workers were assessed by changes in aluminum concentrations in biological fluids (urine and serum) over a short time (2 work days) and a long time (2 years).
- GLP compliance:
- not specified
Test material
- Reference substance name:
- Automatically generated during migration to IUCLID 6, no data available
- IUPAC Name:
- Automatically generated during migration to IUCLID 6, no data available
- Test material form:
- not specified
- Details on test material:
- - Name of test material (as cited in study report): Aluminum sulfate
Constituent 1
Method
- Type of population:
- occupational
- Ethical approval:
- confirmed and informed consent free of coercion received
- Remarks:
- study protocol was approved by the Ethics Committee of the Finnish Institute of Occupational Health.
- Details on study design:
- This is an observational study among workers exposed to different aluminum compounds. In this study, two groups of workers exposed to different aluminum compounds [(welders or fitters) and aluminum sulfate producers]. In addition, the exposure scenario was manipulated by varying the extent of the use of protection devices; compared the accumulation of aluminum among workers with different histories of the use of protection devices. The study concentrated on short-term changes in the aluminum concentrations in body fluids, and also to follow the long-term disappearance of aluminum among welders whose exposure ceased.
Results and discussion
- Results:
- The mean 8-hour time-weighted average concentration of aluminum was 1.1 (range 0.008-6.1) mg/m3 for the shipyard and 0.13 (range 0.02-0.5) mg/m3 for the aluminum sulfate plant. Welding fume contained aluminum oxide particles <0.1 μm in diameter and their agglomerates, whereas bauxite and aluminum sulfate particles ranged from 1 to 10 μm in diameter. The shipyard welders' mean postshift serum and urinary concentrations of aluminum (S-Al and U-Al, respectively) were 0.22 and 3.4 µmol/l, respectively, and the aluminum sulfate workers' corresponding values were 0.13 and 0.58 µmol/l.
After study day I, the median serum aluminum concentration in the group of 12 welders and fitters decreased by about 50% (t-test for paired samples, P<0.01) overnight in 16 hours. In contrast, the concentration of aluminum in the corresponding urine samples from the same workers did not show any consistent change (P=0.64). As regards the five aluminum sulfate plant workers, there were no trends of change overnight after study day I either for the serum aluminum or urinary aluminum concentration. It is however worth noting that, compared with the corresponding value of the welders and fitters, their serum aluminum concentration was relatively higher than the urinary aluminum concentration.
After aluminum welding at the shipyard had ceased, the median S-Al concentration decreased by about 50% (P=0.007) within a year, but there was no change (P=0.75) in the corresponding U-Al concentration.
Any other information on results incl. tables
See the attached document for tables of results
Applicant's summary and conclusion
- Conclusions:
- About 1% of aluminum in welding fume appears to be rapidly absorbed from the lungs, whereas an undetermined fraction is retained and forms a lung burden. A higher fractional absorption of aluminum seems possible for aluminum sulfate workers without evidence of a lung burden. After rapid absorption, aluminum is slowly mobilized from the lung burden and dominates the S-Al and U-Al concentrations of aluminum welders. For kinetic reasons, S-Al or U-Al concentrations cannot be used to estimate the accumulation of aluminum in the target organs of toxicity. However, using U-Al analysis to monitor aluminum welders' lung burden seems practical.
- Executive summary:
Airborne and internal aluminum exposure was assessed for 12 aluminum welders in a shipyard and 5 manufacturers of aluminum sulfate. Particles were characterized with X-ray diffraction and scanning electron microscopy. Aluminum in air and biological samples was analyzed using electrothermal atomic absorption spectrometry. Basic toxicokinetic features were inferred from the data.
The mean 8-hour time-weighted average concentration of aluminum was 1.1 (range 0.008-6.1) mg/m3 for the shipyard and 0.13 (range 0.02-0.5) mg/m3 for the aluminum sulfate plant. Welding fume contained aluminum oxide particles <0.1 µm in diameter and their agglomerates, whereas bauxite and aluminum sulfate particles ranged from 1 to 10 µm in diameter. The shipyard welders' mean postshift serum and urinary concentrations of aluminum (S-Al and U-Al, respectively) were 0.22 and 3.4 µmol/l, respectively, and the aluminum sulfate workers' corresponding values were 0.13 and 0.58 µmol/l. Between two shifts, the welders' S-Al concentration decreased by about 50% (P<0.01), but their U-Al concentration did not change (P=0.64). No corresponding temporal changes occurred among the aluminum sulfate workers. After aluminum welding at the shipyard had ceased, the median S-Al concentration decreased by about 50% (P=0.007) within a year, but there was no change (P=0.75) in the corresponding U-Al concentration.
About 1% of aluminum in welding fume appears to be rapidly absorbed from the lungs, whereas an undetermined fraction is retained and forms a lung burden. A higher fractional absorption of aluminum seems possible for aluminum sulfate workers without evidence of a lung burden. After rapid absorption, aluminum is slowly mobilized from the lung burden and dominates the S-Al and U-Al concentrations of aluminum welders. For kinetic reasons, S-Al or U-Al concentrations cannot be used to estimate the accumulation of aluminum in the target organs of toxicity. However, using U-Al analysis to monitor aluminum welders' lung burden seems practical.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
