Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 229-722-6 | CAS number: 6683-19-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Abiotic and biotic degradation
No experimental data on hydrolysis is available. However, the substance has ester bonds which might slowly hydrolyse.
According to the experimental results on the biodegradability the substance is not readily biodegradable but can be partially eliminated in a sewage treatment plant. The prediction from Catalogic supports this results with a BOD of 2%. The predicted primary half-life of the substance was 6.03 days and the ultimate half-life 2y 11m 11d. It is assumed that the parent compound undergoes a certain degree of primary degradation, i.e. primarily ester hydrolysis resulting in the formation of benzenepropanoic acid (metilox acid, CAS 20170 -32 -5) as major degradation product. Further degradation products were identified with Catalogic.
Based on the available experimental and modelled data it cannot be confirmed whether the parent compound fulfills the persistence criteria or not, but as a worst case it is assumed that it is persistent in the environment with half lives in fresh water >40d. This assumption seems reasonable regarding the high molecular weight of the compound and the resulting limitations due to mass-transfer. It can be assumed that the relevant degradation products (quantity >0.1% mol/mol parent and logKow>=4) are not readily biodegradable and fulfill the criteria for persistence according to REACH Annex XIII as worst case.
Bioaccumulation:
In a weight of evidence approach considering molecular weight, molecular size, log Pow and QSAR data the bioaccumulation potential of the substance was assessed. Taking these data into account CAS 6683-19-5 cannot be regarded as bioaccumulative. Its BCF value is assumed to be clearly below 2000.
QSAR data on the relevant degradation products (quantity >0.1% mol/mol parent and logKow>=4) determined with Catalogic, show that these degradation products have a low bioaccumulation potential and are not considered to be bioaccumulative or very bioaccumulative.
Transport and distribution
Adsorption to the soil and sediment phase is expected. Distribution to air and water compartments is not probable due to the low volatility and low water solubility.
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.