Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 231-176-9 | CAS number: 7440-67-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro cytogenicity / chromosome aberration study in mammalian cells
- Remarks:
- Type of genotoxicity: chromosome aberration
- Type of information:
- migrated information: read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Study period:
- From 2010-04-19 to 2010-05-18
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: see 'Remark'
- Remarks:
- GLP study performed according to OECD Guideline No. 473 " In Vitro Mammalian Chromosome Aberration Test and EC Guideline B10: "Mutagenicity - In Vitro mammalian Chromosome Aberration Test" with minor temperature deviation which didn't have an influence on the validity and integrity of the results..
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 010
- Report date:
- 2010
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 473 (In Vitro Mammalian Chromosome Aberration Test)
- Deviations:
- yes
- Remarks:
- In the dose range finding study/first cytogenetic assay during incubation period, temperature was outside the range of 37.0±1.0°C as specified in the protocol with a minimum of 31.3°C for approx 1.5 hour. This deviation had no effects on the results
- GLP compliance:
- yes
- Type of assay:
- in vitro mammalian chromosome aberration test
Test material
- Reference substance name:
- Zirconium dioxide
- EC Number:
- 215-227-2
- EC Name:
- Zirconium dioxide
- Cas Number:
- 1314-23-4
- IUPAC Name:
- 1314-23-4
- Details on test material:
- - Name of test material (as cited in study report): zirconium dioxide
- Molecular formula (if other than submission substance): Not applicable
- Molecular weight (if other than submission substance): Not applicable
- Smiles notation (if other than submission substance): Not applicable
- InChl (if other than submission substance): Not applicable
- Structural formula attached as image file (if other than submission substance): Not applicable
- Substance type: no data
- Physical state: Off-white powder (determined at NOTOX)
- Analytical purity: 98.87%
- Impurities (identity and concentrations): No data
- Composition of test material, percentage of components: No data
- Isomers composition: Not applicable
- Purity test date: No data
- Lot/batch No.: 10 01 002
- Expiration date of the lot/batch: 2015-03-01
- Radiochemical purity (if radiolabelling): Not applicable
- Specific activity (if radiolabelling): Not applicable
- Locations of the label (if radiolabelling): Not applicable
- Expiration date of radiochemical substance (if radiolabelling): Not applicable
- Stability under test conditions: stable
- Storage condition of test material: At room temperature in the dark
- Other: No data
Constituent 1
Method
- Target gene:
- Not applicable
Species / strain
- Species / strain / cell type:
- lymphocytes: cultured peripheral human lymphocytes
- Details on mammalian cell type (if applicable):
- See section 'Any other information on materials and methods incl. tables'
- Additional strain / cell type characteristics:
- not specified
- Metabolic activation:
- with and without
- Metabolic activation system:
- rat liver microsomal enzymes were routinely prepared from adult male Wistar rats (6), which were obtained from Charles River (Sulzfeld, Germany). S9 fraction
- Test concentrations with justification for top dose:
- Dose range finding test/first cytogenetic assay: at 3 h exposure time: 10, 33 and 100 µg zirconium dioxide/mL culture medium with and without S9-mix; at 24 and 48 h continuous exposure time blood cultures were treated with 1, 3, 10, 33, 100, 333 and 1000 µg zirconium dioxide/mL culture medium without S9-mix
Second cytogenicity test: without S9-mix: 10, 33 and 100 µg/mL culture medium (24 and 48h exposure time, 24h and 48h fixation time); with S9-mix: 10, 33 and 100 µg/mL culture medium (3h exposure time, 48h fixation time) - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: DMSO
- Justification for choice of solvent/vehicle: no data
Controlsopen allclose all
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- mitomycin C
- Remarks:
- Without metabolic activation (-S9-mix); solvent for positive controls: Hanks' Balanced Salt Solution (HBSS) without calcium and magnesium
Migrated to IUCLID6: at a final concentration of 0.5 µg/mL for a 3h exposure period, 0.2 µg/mL for a 24h exposure pe
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- cyclophosphamide
- Remarks:
- With metabolic activation (+S9-mix); solvent for positive controls: Hanks' Balanced Salt Solution (HBSS) without calcium and magnesium
Migrated to IUCLID6: indirect acting mutagen, requiring metabolic activation, at a final concentration of 10 µg/mL for
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: in medium
DURATION
- Preincubation period: not applicable
- Exposure duration: 24 and 48h in the absence of S9-mix or for 3h in the presence of S9 mix (second cytogenetic assay)
- Expression time (cells in growth medium): after 3h exposure, the cells exposed to zirconium dioxide in the presence of S9-mix were separated from the exposure medium by centrifugation (5 min, 365 g). The supernatant was removed and the cells were rinsed once with 5 mL of HBSS and incubated in 5 mL culture medium for another 44 - 46 h; the cells that were treated for 24h and 48 h in the absence of S9-mix were not rinsed after exposure but were fixed immediately after 24h and 48 h (24h and 48h fixation time)
- Selection time (if incubation with a selection agent): not applicable
- Fixation time (start of exposure up to fixation or harvest of cells): see above
SELECTION AGENT (mutation assays): not applicable
SPINDLE INHIBITOR (cytogenetic assays): colchicine (0.5 µg/mL medium) (Acros Organics, Belgium) - during the last 2.5 - 3 h of the culture period
STAIN (for cytogenetic assays): Cell cultures were centrifuged for 5 min at 1300 rpm (365 g) and the supernatant was removed. Cells in the remaining cell pellet were swollen by a 5 min treatment with hypotonic 0.56% (w/v) potassium chloride (Merck) solution at 37°C. After hypotonic treatment, cells were fixed with 3 changes of methanol (Merck): acetic acid (Merck) fixative (3:1 v/v). Fixed cells were dropped onto cleaned slides, which were immersed in a 1:1 mixture of 96% (v/v) ethanol (Merck)/ether (Merck) and cleaned with a tissue. The slides were marked with the NOTOX study identification number and group number. At least two slides were prepared per culture. Slides were allowed to dry and thereafter stained for 10-30 min with 5% (v/v) Giemsa (Merck) solution in tap water. Thereafter slides were rinsed in tap-water and allowed to dry. The dry slides were cleared by dipping them in xylene (Klinipath, Duiven, The Netherlands) before they were embedded in Pertex (Klinipath) and mounted with a coverslip.
NUMBER OF REPLICATIONS: duplicate cultures
NUMBER OF CELLS EVALUATED: To prevent bias, all slides were randomly coded before examination of chromosome aberrations and scored. An adhesive label with NOTOX study identification number and code was placed over the marked slide. One hundred metaphase chromosome spreads per culture were examined by light microscopy for chromosome aberrations. in case the number of aberrant cells, gaps excluded, was > or = 25 in 50 metaphases, no more metaphases were examined. Only metaphases containing 46 ± 2 centromeres (chromosomes) were analysed. The number of cells with aberrations and the number of aberrations were calculated.
DETERMINATION OF CYTOTOXICITY
- Method: mitotic index: The mitotic index of each culture was determined by counting the number of metaphases per 1000 cells. At least three analysable concentrations were used for scoring of the cytogenetic assay. The highest concentration analysed was based on the solubility of Zirconium dioxide in the culture medium. However, the extent of precipitation may not interfere with the scoring of chromosome aberrations.
OTHER EXAMINATIONS:
- Determination of polyploidy: yes
- Determination of endoreplication: yes
- Other: no
OTHER: Test substance preparation: Zirconium dioxide was suspended in dimethyl sulfoxide of spectroscopic quality (SeccoSolv, Merck, Darmstadt, Germany) at concentrations of 0.3 mg/mL and above. the stock solution was treated with ultrasonic waves to obtain a homogeneous suspension. Zirconium dioxide was dissolved in dimethyl sulfoxide at concentrations of 0.1 mg/mL and below. Zirconium dioxide concentrations were used within 2.5 hours after preparation. The final concentration of the solvent in the culture medium was 1.0% (v/v) - Evaluation criteria:
- A test substance was considered positive (clastogenic) in the chromosome aberration test if:
a) It induced a dose-related statistically significant (Chi-square test, one-side, p < 0.05) increase in the number of cells with chromosome aberrations.
b) A statistically significant and biologically relevant increase in the frequencies of the number of cells with chromosome aberrations was observed in the absence of a clear dose-response relationship.
A test substance was considered negative (not clastogenic) in the chromosome aberration test if none of the tested concentrations induced a statistically significant (Chi-square test, one-sided, p < 0.05) increase in the number of cells with chromosome aberrations. The preceding criteria are not absolute and other modifying factors might enter into the final evaluation decision. - Statistics:
- The incidence of aberrant cells (cells with one or more chromosome aberrations, gaps included or excluded) for each exposure group outside the laboratory historical control data range was compared to that of the solvent control using Chi-square statistics:
X²=[(N-1) (ad-bc)²]/[(a+b) (c+d) (a+c) (b+d)]
where b = the total number of aberrant cells in the control cultures, d = the total number of non aberrant cells in the control cultures, n0 = the total number of cells scored in the control cultures, a = the total number of aberrant cells in treated cultures to be compared with the control, c = the total number of non aberrant cells in treated cultures to be compared with the control, n1 = the total number of cells scored in the treated cultures, N = sum of n0 and n1
If P [X² > [(N-1) (ad-bc)²]/[(a+b) (c+d) (a+c) (b+d)]] (one-tailed) is small (p< 0.05) the hypothesis that the incidence of cells with chromosome aberrations is the same for both the treated and the solvent control group is rejected and the number of aberrant cells in the test group is considered to be significantly different from the control group at the 95% confidence interval.
Results and discussion
Test resultsopen allclose all
- Species / strain:
- lymphocytes: cultured peripheral human lymphocytes
- Metabolic activation:
- without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Remarks:
- The mitotic index of the test substance didn't reach 50% of the control value for all tested concentrations
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not applicable
- Positive controls validity:
- valid
- Species / strain:
- lymphocytes: cultured peripheral human lymphocytes
- Metabolic activation:
- with
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Remarks:
- The mitotic index of the test substance didn't reach 50% of the control value for all tested concentrations
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not applicable
- Positive controls validity:
- valid
- Additional information on results:
- TEST-SPECIFIC CONFOUNDING FACTORS
- Effects of pH: no data
- Effects of osmolality: no data
- Evaporation from medium: no data
- Water solubility: no data
- Precipitation:
- Other confounding effects:
RANGE-FINDING/SCREENING STUDIES: In order to select the appropriate dose levels for the chromosome aberration test cytotoxicity data were obtained in a dose range finding test. Zirconium dioxide was tested in the absence and presence of 1.8% (v/v) S9-fraction. Lymphocytes (0.4 mL blood of a healthy male donor + 5 mL or 4.8 mL culture medium + (+ or - S9) + 0.1 mL (9 mg/mL) Phytohaemagglutinin) were cultured for 48 h and thereafter exposed to selected doses of zirconium dioxide for 3h, 24h, and 48h in the absence of S9-mix or for 3 h in the presence of S9-mix. The highest tested concentration was determined by the solubility of zirconium dioxide in the culture medium at the 3h exposure time. At a concentration of 100 µg/mL zirconium dioxide precipitated in the culture medium. The lymphocytes were cultured in duplicate at the 3 h exposure time and appropriate vehicle and positive controls were included. At the 24h and 48h exposure time, zirconium dioxide was tested beyond the limit of solubility to obtain adequate toxicity data. After 3 h exposure to zirconium dioxide in the absence or presence fo S9-mix, the cells were separated from the exposure medium by centrifugation (5 min, 365 g). The supernatant was removed and cells were rinsed with 5 mL HBSS. After a second centrifugation step, HBSS was removed and cells were resuspended in 5 mL culture medium and incubated for another 20 - 22 h (24 h fixation time). The cells that were exposed for 24 h and 48 h in the absence of S9-mix were not rinsed after exposure but were fixed immediately (24 and 48h fixation time).Cytotoxicity of zirconium dioxide in the lymphocyte cultures cultures was determined using the mitotic index. No cytotoxicity was observed in the duplicate cultures of the 3 h exposure time and the slides were scored for chromosome aberrations. The first cytogenetic assay was ommited. Based on the results of the dose range finding test an appropriate range of dose levels was chosen for the second cytogenetic assay considering the highest dose level was determined by the solubility.
COMPARISON WITH HISTORICAL CONTROL DATA: The number of cells with chromosome aberrations found in the solvent control cultures was within the laboratory historical control data range. The number of polyploid cells and cells with endoreduplicated chromosomes in the solvent control cultures was within the laboratory historical control data range. The positive control chemicals (MMC-C and CP) both produced statistically significant increases in the mutation frequency of aberrant cells. It was therefore concluded that the test conditions were adequate and that the metabolic activation system (S9-mix) functioned properly.
ADDITIONAL INFORMATION ON CYTOTOXICITY: - Remarks on result:
- other: all strains/cell types tested
- Remarks:
- Migrated from field 'Test system'.
Any other information on results incl. tables
Results:
Both in the absence and presence of S9 -mix zirconium dioxide did not induce a statistically significant or biologically relevant increase in the number of cells with chromosome aberrations in two independent experiments.
No effects of zirconium dioxide on the number of polyploid cells and cells with endoreduplicated chromosomes were observed both in the absence and presence of S9 -mix. Therfore it can be concluded that zirconium dioxide does not disturb mitotic processes and cell cycle progression and does not induce numerical chromosome aberrations under the experimental conditions of this test.
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results (migrated information):
negative
Finally, it is concluded that this test is valid and that zirconium dioxide is not clastogenic in human lymphocytes under the experimental conditions of this test. - Executive summary:
A chromosome aberration test was performed according to OECD guideline 473. Cultured peripheral human lymphocytes were exposed for 3 hours to 10, 33 and 100 µg zirconium dioxide/mL culture medium with and without S9-mix (dose range finding test/first cytogenetic assay); at 24 and 48 h continuous exposure time blood cultures were treated with 1, 3, 10, 33, 100, 333 and 1000 µg zirconium dioxide/mL culture medium without S9-mix. A second cytogenicity test was performed as follows: without S9-mix: 10, 33 and 100 µg/mL culture medium (24 and 48h exposure time, 24h and 48h fixation time); with S9-mix: 10, 33 and 100 µg/mL culture medium (3h exposure time, 48h fixation time). Vehicle and positive control substances were tested simultaneously and considered valid. Zirconium dioxide tested negative with and without metabolic activation. No cytotoxicity was observed.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.