Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Endpoint:
dermal absorption
Type of information:
other: estimated by modeling on related Hydrotropes category
Adequacy of study:
key study
Study period:
2010
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: Estimations based on state of the science modelling, not measurement

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2010
Report date:
2010

Materials and methods

Principles of method if other than guideline:
estimation by modelling

Test material

Constituent 1
Reference substance name:
Hydrotropes
IUPAC Name:
Hydrotropes
Details on test material:
The HYDROTOPE Category comprises the following 6 substances:
STS - Sodium toluene sulphonate (CAS 657-84-1, EC 211-522-5)
SXS - Sodium (xylenes and 4-ethylbenzene) sulphonate (EC 701-037-1)
NH4XS - Ammonium (xylenes and 4-ethylbenzene) sulphonate (EC 943-024-5)
SCS - Sodium cumene sulphonate (CAS 15763-76-5, EC 239-854-6)
KCS - Potassium cumene sulphonate (CAS 164524-02-1, EC 629-764-9)
NH4CS - Ammonium cumene sulphonate (CAS 37475-88-0, 253-519-1) 
In addition CaXS (Calcium Xylenesulphonate, CAS 28088-63-3, EC248-829-9) was evaluated for complete the assessment despite it is not registered under REACH.

Results and discussion

Percutaneous absorption
Key result
Parameter:
percentage
Absorption:
2.8 %
Remarks on result:
other:

Any other information on results incl. tables

The modelling results show that the uptake of hydrotropes from either a diluted solution, or the concentrated product, into the stratum corneum, for short exposure durations varies between 0.36% and 0.55% of the amount applied.

- % dermal absorption is independent of concentration (i.e., the dermal flux is not saturated) and skin contact area

- % dermal absorption increases with duration exposure

- for all concentrations, the 23 hour uptake efficiency is ca 2.8% for this exposure scenario (it is unlikely if not inconceivable that anyone would be exposed to a solution containing a hydrotrope for 23 hours without removal and/or washing of the exposed surface; therefore the 2.8% uptake efficiency would represent an upper bound value)

- a 2.8% dermal absorption factor can therefore be used as an upper bound value in the exposure dose calculation

Applicant's summary and conclusion

Conclusions:
Based on state-of-science modelling, a 2.8% dermal absorption factor can be used as an upper bound value in exposure dose calculations for hydrotropes.