Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 215-231-4 | CAS number: 1314-35-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Neurotoxicity
Administrative data
Description of key information
The following information is taken into account for any hazard / risk assessment: No neurotoxicity data of sufficient quality are available for tungsten trioxide (target substance). However, neurotoxicity data are available for sodium tungstate (source substance), which are used for read-across. Due to lower water solubility and lower toxicity for the target substance compared to the source substance, the resulting read-across from the source substance to the target substance is appropriate as a conservative estimate of potential toxicity for this endpoint. In addition, read-across is appropriate because the classification and labelling is more protective for the source substance than the target substance, the PBT/vPvB profile is the same, and the dose descriptors are, or are expected to be, lower for the source substance. For more details, refer to the read-across category approach description in the Category section of this IUCLID submission or Annex 3 of the CSR.
The neurotoxicity potential of sodium tungstate is reported by two publications by Sachdeva et al, 2015 and Radcliffe et al, 2009. An inhalation study reported that sodium tungstate is not appreciably transported via the olfactory pathway to the brain following a single 90-min exposure in rats, although this pathway is known to transport a number of other metals (Radcliffe et al, 2009). Sodium tungstate exposure was reported in one study to produced oxidative stress in brains from rats exposed. However, the study did not elucidate and correlate these oxidative changes with behavioral and functional alterations (Sachdeva et al, 2015).
Key value for chemical safety assessment
Effect on neurotoxicity: via oral route
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed
- Dose descriptor:
- NOAEL
- 125 mg/kg bw/day
- Study duration:
- subchronic
- Species:
- rat
- Quality of whole database:
- Well documented scientfically sound study similar to OECD guidelines with sufficient information provided on materials and methods to evaluate results. However as this study is used in the context of a read across, Klimisch 2 is assigned.
Effect on neurotoxicity: via inhalation route
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed
- Quality of whole database:
- Well documented scientfically sound study with sufficient information provided on materials and methods to evaluate results. However as this study is used in the context of a read across, Klimisch 2 is assigned.
Effect on neurotoxicity: via dermal route
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Justification for classification or non-classification
No neurotoxicity studies are available for tungsten trioxide. However, data were available on sodium tungstate, which are used for read-across. The sodium tungstate neurotoxicity studies are more investigative reports conducted under no standard testing guidelines which limit their usability for regulatory purposes. Based on this, none of the data from these publications warrant any classification for sodium tungstate and subsequently tungsten trioxide as neurotoxicants per CLP as more information is needed.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.