Registration Dossier

Administrative data

Description of key information

Repeated Dose Toxicity - Oral Route:

No oral repeated dose toxicity data of sufficient quality are available for tungsten carbide (target substance). However, repeated oral dose toxicity data are available for sodium tungstate (source substance), which will be used for reading across. Due to lower water solubility and lower toxicity for the target substance compared to the source substance, the resulting read across from the source substance to the target substance is appropriate as a conservative estimate of potential toxicity for this endpoint. In addition, read across is appropriate because the classification and labelling is more protective for the source substance than the target substance, the PBT/vPvB profile is the same, and the dose descriptors are, or are expected to be, lower for the source substance. For more details, refer to the read-across category approach included in the Category section of this IUCLID submission and/or as an Annex in the CSR.

The read across study on sodium tungstate was sponsored conducted the United States Army Center for Health Promotion and Preventive Medicine and published byMcCain et al. (2015). The 90-day oral toxicity study was conducted in rats according to the procedure described in the Environmental Protection Agency (EPA) Health Effects Testing Guidelines (40 CFR, Part 798.2650) in compliance with Good Laboratory Practice. Briefly, this study of the subchronic toxicity of sodium tungstate dihydrate aqueous solution in male and female Sprague-Dawley rats was evaluated by daily oral gavage of 0, 10, 75, 125, or 200 mg/kg bw/d for 90 days. Measured parameters included food consumption, body weight measurements, hematology, clinical chemistry, and histopathological changes. There was a significant decrease in food consumption and body weight gain in males at 200 mg/kg bw/d from days 77 to 90; however, there was no effect in food consumption and body weights in females. There were no changes in the hematological and clinical parameters studied. Histopathological changes were seen in kidney of male and female and epididymis of male rats. The histopathological changes observed in the kidneys of male and female rats dosed at 125 or 200 mg/k/d consisting of mild to severe cortical tubule basophilia in 2 high-dose groups. Histological changes in epididymides included intraluminal hypospermia with cell debris in the 200 mg/kg bw/day dosed male rats. Histopathological changes were observed in the glandular stomach including inflammation and metaplasia in the high-dose groups (125 or 200 mg/kg bw/day) of both sexes of rats. Based on histopathology effects seen in the kidneys, the lowest observable adverse effect level was 125 mg/kg bw/d and the no observable adverse effect level was 75 mg/kg bw/d in both sexes of rats for oral subchronic toxicity. The USEPA’s Benchmark Dose Software (BMDS, Version 1.4.1) was used to model the data to derive a BMDL10. The lowest (most precautionary) BMDL10 from the renal toxicity endpoint in the 90-day oral toxicity study was 102 mg/kg bw/d.

In addition to McCain et al. (2015) rat oral 90-day repeated dose study, the US National Toxicology Program (NTP) has conducted two additional 90-day drinking water studies, one in Sprague-Dawley rats and a second one in B6C3F1 mice (10/sex/species/dose). The study design included doses of0, 125, 250, 500, 1000, or 2000 mg/L. The in-life study phase has been completed but no study report has yet been issued. Currently, available in the US NTP website are graphs and Tables are preliminary results, but no full report has been issued. Furthermore, at the 2012 Annual Meeting of the Society of Toxicology, a Scientific Poster was presented detailing preliminary results of the NTP study. Preliminary results confirm the results of the McCain gavage study, showing the kidney as the major target organ for tungstate (especially at high drinking water doses of 1,000 and 2,000 mg/L). In a personal communication, the U.S. NTP Study Coordinator, Dr. Mamta Behl estimated that final reports will be available in 2 to 3 years.

Repeated Dose Toxicity - Inhalation Route:

A 90-day repeat dose inhalation toxicity study was identified for WC in which one dose of WC (15 mg/m3) was administered to rats and mice, whole body inhalation exposure, 5 days/week for 13 weeks. The LOEL was deemed to be 15 mg/m3in rats based on mild histopathological alterations in the lungs (focal reactions around the end airways) and chronic rhinitis, and in mice based on chronic rhinitis. However, because only one dose was evaluated, this dose did not result in any effects on which a DNEL would be derived or classification would be based, and using this dose would result in an inaccurate DNEL and classification, the 28-day inhalation toxicity study on TBO will be used for read across. In this 28-day inhalation toxicity study conducted according to OECD 412, 5 rats/sex/dose were given TBO nose-only for 6 hours per day, 7 days/week, for 28 days (with a 14-day recovery period) at doses of 0 (control), 0.08, 0.325, and 0.65 mg TBO/L air. The NOAEL was deemed to be > 0.65 mg/L air (650 mg/m3), as no significant effects were reported.

Key value for chemical safety assessment

Repeated dose toxicity: via oral route - systemic effects

Link to relevant study records

Referenceopen allclose all

Endpoint:
sub-chronic toxicity: oral
Type of information:
read-across based on grouping of substances (category approach)
Adequacy of study:
key study
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study
Remarks:
Well documented, scientifically sound study that was conducted according to EPA OTS 798.2650 (90-Day Oral Toxicity in Rodents)
Justification for type of information:
1. HYPOTHESIS FOR THE ANALOGUE APPROACH: The hypothesis is that properties are likely to be similar or follow a similar pattern because of the presence of a common metal ion, in this case tungstate.
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES):
Source: Sodium tungstate
Target: Tungsten Carbide
3. CATEGORY APPROACH JUSTIFICATION: See Annex 1 in CSR
4. DATA MATRIX: See Annex 1 in CSR
Reason / purpose:
assessment report
Reason / purpose:
read-across source
Qualifier:
according to
Guideline:
EPA OTS 798.2650 (90-Day Oral Toxicity in Rodents)
Deviations:
no
GLP compliance:
yes
Limit test:
no
Specific details on test material used for the study:
Sodium tungstate dihydrate (Tungstic acid sodium salt dihydrate, Na2WO42H2O, CAS # 10213-10-2, Batch # 12330JO) 99% pure
Species:
rat
Strain:
other: SD
Details on species / strain selection:
5-week-old SD rats were purchased from Charles River laboratories, Raleigh, North Carolina
Sex:
male/female
Details on test animals and environmental conditions:
Animals were held for 1 week in quarantine prior to initiation of treatments. At the start of testing, rats weighed between 199 and 230 g. Test animals were identified by individual cage cards and microchip implants and were individually housed in
polycarbonate cages. Bedding was placed in the bottom of each cage and replaced twice weekly. Drinking quality water and a certified laboratory diet were available ad libitum. Animal rooms were maintained at 64 F to 79 F, with relative humidity of 30% to 70% and a 12-hour light–dark cycle.
Route of administration:
oral: drinking water
Details on route of administration:
Sodium tungstate dihydrate was solubilized with DI water to produce 4 dosing solutions
Vehicle:
water
Details on oral exposure:
The dose levels were selected on the basis of our previous studies where the highest dose used was 200 mg/kg/ d in a subchronic toxicity study. Sodium tungstate dihydrate was solubilized with DI water to produce 4 dosing solutions of
200, 125, 75, and 10 mg Na2WO4/mL.
Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
Tungstate concentrations of the dosing solutions were verified by the Aberdeen Test Center and found to be consistent for purity and stability during the study period
Duration of treatment / exposure:
A 90-day oral toxicity study
Frequency of treatment:
Test chemical solutions were administered daily (7 days per week) for 90 days. A 16 GA 2-in stainless steel gavage needle
Dose / conc.:
10 mg/kg bw/day (actual dose received)
Dose / conc.:
75 mg/kg bw/day (actual dose received)
Dose / conc.:
125 mg/kg bw/day (actual dose received)
Dose / conc.:
200 mg/kg bw/day (actual dose received)
No. of animals per sex per dose:
Following 1-week quarantine/acclimatization period, 50 male and 50 female SD rats were randomly distributed
Control animals:
yes, concurrent vehicle
Details on study design:
Sodium tungstate dihydrate was solubilized with DI water to produce 4 dosing solutions of 200, 125, 75, and 10 mg Na2WO4/mL.
Observations and examinations performed and frequency:
A clinical examination was made for each animal prior to initiation of treatment and once weekly during treatment. Observations included but were not limited to changes in skin and fur, eyes, mucous membranes, occurrence of secretions and excretions, and autonomic activity (eg, lacrimation, piloerection, pupil size, and unusual respiratory pattern). Changes in gait, posture, and response to handling as well as the presence of clonic or tonic movements, stereotypes (eg, excessive grooming, repetitive circling), or bizarre behavior (eg, selfmutilation, walking backward) were recorded according to testing guidelines. Body and feeder weights were recorded on days .3, .1, 0 (first day of dosing), 7, and weekly thereafter. Doses were adjusted weekly to reflect the change in individual body weights. Animals were observed daily for any toxic signs.
Sacrifice and pathology:
Blood was collected. Each rat was then submitted for complete necropsy. The brain, heart, liver, kidneys, spleen, adrenals, thymus, epididymis/uterus, and testes/ovaries were removed and weighed for absolute organ weights. The tissues harvested for histopathological evaluation included the brain, pituitary, thyroid with parathyroid gland, thymus, lungs, trachea, heart, bone marrow, salivary gland, liver, spleen, kidney, adrenal gland, pancreas, testis, ovaries, uterus, aorta, esophagus, stomach, duodenum, jejunum, ileum, caecum, colon, urinary bladder, salivary lymph node peripheral nerve (siatic), thigh musculature (vastus lateralis), eye, spinal cord (3 levels), and exorbital lachrymal gland.

Hematology parameters included white blood cell count, neutrophils, lymphocytes, monocytes, eosinophils, basophils, red blood cell count, hemoglobin, hematocrit, mean cell volume, mean cell hemoglobin, mean cell hemoglobin concentration, red blood cell distribution width, platelets, and mean platelet volume.

Clinical chemistry parameters measured included The clinical chemistry analytes ialkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, calcium, cholesterol, creatinine kinase, creatinine, glucose (GLU; nonfasting), lactate dehydrogenase, total bilirubin, total protein, triglycerides, Na, K, and Cl

Urinalysis included appearance, pH, specific gravity, GLU, bilirubin, urobilinogen, ketone, blood, protein, nitrite, and leukocytes.
Other examinations:
Ophthalmic examinations were performed on all control and treated animals prior to the scheduled start of the study and within a week of the scheduled 90-day necropsies. Urinalysis was also performed on 8 of 10 animals from all dose
groups (including negative control) within 2 weeks of the final (90-day) necropsies
Statistics:
Food consumption, body weights, and absolute organ weights were compared among dosage groups and controls using ANOVA. When significance was observed, the data were further analyzed using a Dunnett test to compare the doses to the control group. Statistical significance was defined at the P <05 level. Clinical chemistry, hematology, and urinalysis data were analyzed with ANOVA and Bonferroni post hoc test to compare dosage groups to the control group.
Clinical signs:
no effects observed
Description (incidence and severity):
- No evidence of overt toxicity and no treatment-related clinical signs were seen in any dose levels.
- Results showed that rats dosed with sodium tungstate in water for 90 consecutive days had no abnormal clinical signs at any of the dose levels
Mortality:
mortality observed, non-treatment-related
Description (incidence):
No unscheduled deaths (a single male rat in 200 mg/kg/d dose group was moribund and was euthanized on day 79; a few tissues from this rat were submitted for histopathological examination and death was determined to be not compound related
Body weight and weight changes:
effects observed, treatment-related
Description (incidence and severity):
There were significant decreases in food consumption in male rats at 200 mg/kg/d from weeks of 4 to 13, while there was no change in food consumption in female rats during the 90-day study
Food consumption and compound intake (if feeding study):
effects observed, treatment-related
Description (incidence and severity):
There were significant decreases in food consumption in male rats at 200 mg/kg/d from weeks of 4 to 13, while there was no change in food consumption in female rats during the 90-day study changes in female rats in any dose groups throughout study
period when compared to control rats.
Food efficiency:
not specified
Water consumption and compound intake (if drinking water study):
not specified
Ophthalmological findings:
no effects observed
Description (incidence and severity):
Ophthalmic examinations prior to study initiation and within
a week of the scheduled necropsies revealed no abnormalities
Haematological findings:
no effects observed
Description (incidence and severity):
Male and female rats showed no significant differences in any hematological parameters at any dose levels of sodium tungstate
Clinical biochemistry findings:
no effects observed
Description (incidence and severity):
The results of clinical chemistry parameters studied in rats showed no significant changes in any dose levels of sodium tungstate in rats. The parameters studied showed some changes in levels that were not dose related and insignificant and considered within normal range limits when compared to controls. All other parameters were found to be similar to control rats.

Urinalysis findings:
no effects observed
Description (incidence and severity):
Examination of urine samples taken approximately 1 week prior to necropsy revealed no significant changes in volume, specific gravity, or pH. No distinct dose-related trends were observed in GLU, bilirubin, ketone, blood, protein, urobilinogen,
nitrite, or leukocytes
Behaviour (functional findings):
no effects observed
Immunological findings:
not examined
Organ weight findings including organ / body weight ratios:
effects observed, treatment-related
Description (incidence and severity):
The body weights, absolute heart, liver, and thymus weights were significantly lower in male rats dosed at 200 mg/kg/d compared to control rat, but there were no effects on body weights and organ weights of female rats
Gross pathological findings:
not specified
Neuropathological findings:
not examined
Histopathological findings: non-neoplastic:
effects observed, treatment-related
Description (incidence and severity):
- Histopathology examination revealed effects on the urogenital system of the sodium tungstate-treated rats. Changes included mild to severe basophilia of renal cortical tubules in 1 of 9 and 10 of 10 males and 1 of 10 and 8 of 10 females in 2 high-dose
groups (125 and 200 mg/kg/d), respectively.
- Histopathological analysis of epididymides of rats dosed with sodium tungstate showed considerable effects in the high-dose group, Intraluminal cellular debris with and without hypospermia was noted in the epididymides of 3 of 10 males in the 200 mg/kg/d dose group. The lesion was not observed in the 10, 75, and 125 mg/kg/d dose groups.
- Histologic changes were also noted in the glandular stomach of males and females in high dosage groups. The changes included subacute inflammation consisting primarily of EOSs admixed with fewer mononuclear cells observed throughout the submucosa of 5 of 9, 4 of 10 males, and 8 of 10, 9 of 10 females in, 125 and 200 mg/kg/d dosage groups, respectively. Goblet cell metaplasia was also observed in the mucosa of the glandular stomach 8 of 9, 8 of 10 males and 8 of 10, 10 of 10
females of 125 and 200 mg/kg/d dosage groups, respectively. The gastric histologic findings in the lower dosed group were negative when compared to 2 high-dose groups
Histopathological findings: neoplastic:
no effects observed
Key result
Dose descriptor:
BMDL10
Effect level:
102 mg/kg bw/day (actual dose received)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
histopathology: non-neoplastic
Key result
Dose descriptor:
NOAEL
Effect level:
75 mg/kg bw/day (actual dose received)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
histopathology: non-neoplastic
Key result
Dose descriptor:
LOAEL
Effect level:
125 mg/kg bw/day (actual dose received)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
histopathology: non-neoplastic
Dose descriptor:
LOAEL
Effect level:
175 mg/kg bw/day (actual dose received)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
histopathology: non-neoplastic
Key result
Dose descriptor:
LOAEL
Effect level:
200 mg/kg bw/day (actual dose received)
Based on:
test mat.
Sex:
male
Basis for effect level:
food consumption and compound intake
Key result
Dose descriptor:
LOAEL
Effect level:
200 mg/kg bw/day (actual dose received)
Based on:
test mat.
Sex:
male
Basis for effect level:
body weight and weight gain
Key result
Dose descriptor:
NOAEL
Effect level:
200 mg/kg bw/day (actual dose received)
Based on:
test mat.
Sex:
male/female
Basis for effect level:
clinical signs
haematology
Key result
Dose descriptor:
LOAEL
Effect level:
200 mg/kg bw/day (actual dose received)
Based on:
test mat.
Sex:
male
Basis for effect level:
histopathology: non-neoplastic
Key result
Critical effects observed:
yes
Lowest effective dose / conc.:
125 mg/kg bw/day (actual dose received)
System:
urinary
Organ:
kidney
Treatment related:
yes
Dose response relationship:
yes
Relevant for humans:
yes
Conclusions:
Subchronic toxicity of sodium tungstate was assessed in in male and female Sprague-Dawley rats by daily oral gavage of 0, 10, 75, 125, or 200 mg/kg/d for 90 days. There was a significant decrease in food consumption and body weight gain in males at 200 mg/kg/d from days 77 to 90; however, there was no effect in food consumption and body weights in females. There were no changes in the hematological and clinical parameters studied. Histopathological changes were seen in kidney of male and female and epididymis of male rats. Histopathological changes were observed in the kidneys of male and female rats dosed at 125 or 200 mg/k/d consisting of mild to severe cortical tubule basophilia in 2 high-dose groups. Histological changes in epididymides included intraluminal hypospermia with cell debris in the 200 mg/kg/d dosed male rats. Histopathological changes were observed in the glandular stomach including inflammation and metaplasia in the high-dose groups (125 or 200 mg/kg/d) of both sexes of rats. Based on histopathology effects seen in the kidneys, the lowest observable adverse effect level was 125 mg/kg/d and the no observable adverse effect level was 75 mg/kg/d in both sexes of rats for oral subchronic toxicity.
Executive summary:

No oral repeated dose toxicity data of sufficient quality are available for tungsten carbide (target substance). However, oral repeated dose toxicity data are available for sodium tungstate (source substance), which will be used for reading across. Due to lower water solubility and lower toxicity for the target substance compared to the source substance, the resulting read across from the source substance to the target substance is appropriate as a conservative estimate of potential toxicity for this endpoint. In addition, read across is appropriate because the classification and labelling is more protective for the source substance than the target substance, the PBT/vPvB profile is the same, and the dose descriptors are, or are expected to be, lower for the source substance. For more details, refer to the read-across category approach included in the Category section of this IUCLID submission and/or as an Annex in the CSR.

Endpoint:
sub-chronic toxicity: oral
Type of information:
read-across based on grouping of substances (category approach)
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
comparable to guideline study with acceptable restrictions
Justification for type of information:
1. HYPOTHESIS FOR THE ANALOGUE APPROACH: The hypothesis is that properties are likely to be similar or follow a similar pattern because of the presence of a common metal ion, in this case tungstate.
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES):
Source: Sodium tungstate
Target: Tungsten Carbide
3. CATEGORY APPROACH JUSTIFICATION: See Annex 1 in CSR
4. DATA MATRIX: See Annex 1 in CSR
Reason / purpose:
read-across: supporting information
Qualifier:
equivalent or similar to
Guideline:
EPA OPPTS 870.3100 (90-Day Oral Toxicity in Rodents)
GLP compliance:
yes
Limit test:
no
Species:
mouse
Strain:
B6C3F1
Details on species / strain selection:
B6C3F1/N
Sex:
male/female
Details on test animals and environmental conditions:
After a 10- to 14-day quarantine period, animals are assigned at random to treatment groups including:
- Five treatment groups, each administered a different concentration of the test substance
- One control group

Each group contains 10 animals per sex per species. Male mice are housed individually,

Animals are individually weighed on days one and seven, and at sacrifice. All animals are observed twice daily for clinical signs of pharmacologic and toxic effects of the test substance, declining health, or death. Animals found near death or showing clinical signs of pain or distress are humanely euthanized. For dosed-feed or dosed-water studies, food consumption/water consumption is measured and recorded weekly.
Route of administration:
oral: drinking water
Details on route of administration:
doionized drinking water
Vehicle:
water
Analytical verification of doses or concentrations:
yes
Frequency of treatment:
Daily
Dose / conc.:
0 mg/L drinking water
Dose / conc.:
125 mg/L drinking water
Dose / conc.:
250 mg/L drinking water
Dose / conc.:
500 mg/L drinking water
Dose / conc.:
1 000 mg/L drinking water
Dose / conc.:
2 000 mg/L drinking water
No. of animals per sex per dose:
Each group per sex per species contains five animals
Control animals:
yes, concurrent vehicle
Positive control:
Not applicable
Observations and examinations performed and frequency:
Animals are individually weighed on days one, seven, and at weekly periods thereafter. All animals are observed twice daily for clinical signs of declining health, or death. Animals found near death or showing clinical signs of pain or distress are humanely euthanized. Formal clinical observations are performed and recorded weekly. Food consumption/water consumption is measured and recorded weekly.

Clinical Laboratory Studies
Blood is collected from both sexes of "special study" rats, at days 4 ± 1 and 21 ± 2 and from the core study rats at the end of the study. These are processed for hematology and clinical chemistry determinations. Blood is collected from core study mice at the end of the study for hematology determinations. See clinical measurements:

1. Hematology:
Erythrocyte count
Mean corpuscular volume
Hemoglobin
Packed cell volume
Mean corpuscular hemoglobin
Mean corpuscular hemoglobin concentration
Erythrocyte morphologic assessment
Leukocyte count
Leukocyte differential
Reticulocyte count
Platelet count and morphologic assessment

2. Clinical Chemistry:
Sorbitol dehydrogenase (SDH)
Alkaline Phosphatase (ALP)
Creatine Kinase (CK)
Creatinine
Total Protein
Albumin
Urea Nitrogen (BUN)
Total Bile Acids
Alanine Aminotransferase (ALT)
Glucose
Cholesterol
Triglycerides
Sacrifice and pathology:
A complete gross necropsy is an external examination of the animal including body orifices and examination and fixation of all of the following organs/tissues from animals from all treatment groups for histopathologic examination.
Adrenal glands
Brain
Clitoral glands
Esophagus
Eyes
Femur
Gallbladder (mouse)
Gross lesions
Harderian glands
Heart and aorta
Intestine, large (cecum, colon, rectum)
Intestine, small (duodenum, jejunum, ileum)
Kidneys
Liver
Lungs and mainstem bronchi
mandibular and mesenteric
bronchial mediastinal (inhalation studies)
Mammary gland with adjacent skin
Muscle, thigh
Nerve, sciatic
Nasal cavity and nasal turbinates
Oral cavity, larynx, and pharynx
Ovaries
Pancreas
Parathyroid glands
Pituitary gland
Preputial glands
Prostate
Salivary glands
Seminal vesicles
Skin, site of application (dermal studies)
Spinal cord
Spleen
Stomach (forestomach and glandular)
Testes, epididymides, and vaginal tunics of testes
Thymus
Thyroid gland
Tissue masses
Tongue
Trachea
Urinary bladder
Uterus
Vagina
Zymbal glands

- A complete histopathologic evaluation inclusive of treatment-related gross lesions shall be done on all animals. Treatment-related lesions for target organs shall be identified and these organs plus gross lesions shall be examined to a no-effect level. TIssues examined:
Adrenal glands
Brain (3 sections including frontal cortex and basal ganglia, parietal cortex and thalamus, and cerebellum and pons)
Clitoral glands
Esophagus
Eyes
Femur, including diaphysis with marrow cavity and epiphysis (femoral condyle with epiphyseal cartilage plate, articular cartilage and articular surface)
Gallbladder (mouse)
Gross lesions
Harderian glands
Heart and aorta
Intestine, large (cecum, colon, rectum)
Intestine, small (duodenum, jejunum, ileum)
Kidneys
Larynx (inhalation studies)
Liver (2 sections including left lateral lobe and median lobe)
Lungs and mainstem bronchi
Lymph nodes
mandibular and mesenteric
bronchial & mediastinal (inhalation studies)
Mammary gland with adjacent skin
Muscle, thigh (only if neuromuscular signs were present)
Nasal cavity and nasal turbinates (3 sections)
Ovaries
Pancreas
Parathyroid glands
Pituitary gland
Preputial glands
Prostate
Salivary glands
Seminal vesicle
Skin, site of application (dermal studies)
Spinal cord and sciatic nerve (if neurologic signs were present)
Spleen
Stomach (forestomach and glandular)
Testes with epididymides
Thymus
Thyroid gland
Tissue masses
Trachea
Urinary bladder
Uterus
Other examinations:
Genotoxicity (micronucleus and Comet assay)
Clinical signs:
no effects observed
Mortality:
no mortality observed
Description (incidence):
During the 13-week phase of the study, there was no effect on survival in mice
Body weight and weight changes:
effects observed, treatment-related
Description (incidence and severity):
Male mice at the highest drinking water concentration (2000 mg/L) showed a decreased on body weight starting at the 15-day of treatment compared it to control animals. Whereas female mice body weight started to decreased at the fourth week of treatment at all the drinking water concentrations.
Food consumption and compound intake (if feeding study):
not specified
Food efficiency:
not specified
Water consumption and compound intake (if drinking water study):
effects observed, treatment-related
Description (incidence and severity):
Decreased water consumption was observed in 1000 (11%) and 2000 mg/L (16%) male mice
Ophthalmological findings:
not specified
Haematological findings:
no effects observed
Description (incidence and severity):
During the 13-week phase of the study, there was no effect on hematology in mice
Clinical biochemistry findings:
not specified
Urinalysis findings:
not specified
Behaviour (functional findings):
not specified
Immunological findings:
not specified
Organ weight findings including organ / body weight ratios:
no effects observed
Description (incidence and severity):
During the 13-week phase of the study, there was no effect on organ weights in mice
Gross pathological findings:
not specified
Neuropathological findings:
not specified
Histopathological findings: non-neoplastic:
effects observed, treatment-related
Description (incidence and severity):
- Liver cellular infiltration (mixed cell) was found in 30 and 40% of the male mice in control and 2000 mg/L animals, respectively.
- Cellular infiltration (mononuclear cell) was observed in 10% of the male animals in control, 125 and 1000 mg/L treatment groups. Twenty percent of the male animals at the 2000 mg/L presented also cellular infilration. Nephropathy was found in control (10%), 125 (10%), 250 (10%), 500 (10%) and 1000 (20%) mg/L groups. Renal tubule regeneration was reported in 60 and 100% of the animals exposed to 1000 and 2000 mg/L, respectively.
- Ten percent of the female control animals presented inflammation of the large (rectum) and small (jejunum) intestines, and salivary gland cellular infiltration; with 90% of the control female mice presented liver cellular infiltration (mixed cell).
- Ninety percent of the 2000 mg/L female mice presented liver cellular infiltration (mixed cell), with 10% of the female mice perivascular lung cellular infiltration (mononuclear), bone lession (fibro-osseous), and and salivary gland cellular infiltration.
- Nephropathy was reported in 10 and 20% of the female mice in the 125 and 250 mg/L groups. Kidney cellular infiltration (mononuclear) was observed in 10% of the female mice in the 500 and 1000 mg/L groups. Renal tubule (regeneration) was reported in 10 and 20% of the female mice in the 1000 and 2000 mg/L.
- Statistically significance of non-neoplastic lessions (kidney renal tubule regeneration) in male mice were reported at 1000 and 2000 mg/L drinking water concentration
Histopathological findings: neoplastic:
no effects observed
Description (incidence and severity):
- No neoplasms were reported in exposed male or female mice.
Other effects:
no effects observed
Description (incidence and severity):
The micronucleus assay was negative in mice. The Comet assay was positive in the liver and ileum of male mice and negative in the blood and kidney of mice.
Key result
Dose descriptor:
LOAEL
Effect level:
ca. 1 000 mg/L drinking water
Based on:
test mat.
Sex:
male/female
Basis for effect level:
histopathology: non-neoplastic
Key result
Dose descriptor:
NOAEL
Effect level:
ca. 500 mg/L drinking water
Based on:
test mat.
Sex:
male/female
Basis for effect level:
histopathology: non-neoplastic
Key result
Critical effects observed:
yes
Lowest effective dose / conc.:
1 000 mg/L drinking water
System:
urinary
Organ:
kidney
Treatment related:
yes
Dose response relationship:
yes
Relevant for humans:
yes
Conclusions:
Decreased water consumption was observed in 1000 (11%) and 2000 mg/L (16%) male mice. During the 13-week phase of the study, there was no effect on survival, hematology, or organ weights in mice. Renal tubule regeneration was characterized by hyperplasia of tubular epithelial cells with cytoplasmic basophilia, nuclear crowding, karyomegaly, and occasional mitotic figures. Total tungsten concentrations were generally dose proportional in blood and urine. The micronucleus assay was negative in mice. The Comet assay was positive in the liver and ileum of male mice and negative in the blood and kidney of mice. The kidney appeared to be the only major target organ following exposure of mice to sodium tungstate dihydrate at water concentrations of 1000 and 2000 mg/L.
Executive summary:

No oral repeated dose toxicity data of sufficient quality are available for tungsten carbide (target substance). However, oral repeated dose toxicity data are available for sodium tungstate (source substance), which will be used for reading across. Due to lower water solubility and lower toxicity for the target substance compared to the source substance, the resulting read across from the source substance to the target substance is appropriate as a conservative estimate of potential toxicity for this endpoint. In addition, read across is appropriate because the classification and labelling is more protective for the source substance than the target substance, the PBT/vPvB profile is the same, and the dose descriptors are, or are expected to be, lower for the source substance. For more details, refer to the read-across category approach included in the Category section of this IUCLID submission and/or as an Annex in the CSR.

Endpoint:
sub-chronic toxicity: oral
Type of information:
read-across based on grouping of substances (category approach)
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
comparable to guideline study with acceptable restrictions
Justification for type of information:
1. HYPOTHESIS FOR THE ANALOGUE APPROACH: The hypothesis is that properties are likely to be similar or follow a similar pattern because of the presence of a common metal ion, in this case tungstate.
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES):
Source: Sodium tungstate
Target: Tungsten Carbide
3. CATEGORY APPROACH JUSTIFICATION: See Annex 1 in CSR
4. DATA MATRIX: See Annex 1 in CSR
Reason / purpose:
reference to same study
Reason / purpose:
read-across: supporting information
Qualifier:
equivalent or similar to
Guideline:
EPA OPPTS 870.3100 (90-Day Oral Toxicity in Rodents)
GLP compliance:
yes
Limit test:
no
Species:
rat
Strain:
Sprague-Dawley
Sex:
male/female
Details on test animals and environmental conditions:
After a 10- to 14-day quarantine period, animals are assigned at random to treatment groups including:
- Five treatment groups, each administered a different concentration of the test substance
- One control group

Each group contains 10 animals per sex per species. Male mice are housed individually,

Animals are individually weighed on days one and seven, and at sacrifice. All animals are observed twice daily for clinical signs of pharmacologic and toxic effects of the test substance, declining health, or death. Animals found near death or showing clinical signs of pain or distress are humanely euthanized. For dosed-feed or dosed-water studies, food consumption/water consumption is measured and recorded weekly.
Route of administration:
oral: drinking water
Details on route of administration:
doionized drinking water
Vehicle:
water
Details on oral exposure:
- 90 days for dosed-feed and dosed-water studies
Analytical verification of doses or concentrations:
not specified
Duration of treatment / exposure:
90-days
Frequency of treatment:
Daily
Dose / conc.:
0 mg/L drinking water
Dose / conc.:
125 mg/L drinking water
Dose / conc.:
250 mg/L drinking water
Dose / conc.:
500 mg/L drinking water
Dose / conc.:
1 000 mg/L drinking water
Dose / conc.:
2 000 mg/L drinking water
No. of animals per sex per dose:
Each group per sex per species contains five animals
Control animals:
yes, concurrent vehicle
Positive control:
Not applicable
Observations and examinations performed and frequency:
Animals are individually weighed on days one, seven, and at weekly periods thereafter. All animals are observed twice daily for clinical signs of declining health, or death. Animals found near death or showing clinical signs of pain or distress are humanely euthanized. Formal clinical observations are performed and recorded weekly. Food consumption/water consumption is measured and recorded weekly.

Clinical Laboratory Studies
Blood is collected from both sexes of "special study" rats, at days 4 ± 1 and 21 ± 2 and from the core study rats at the end of the study. These are processed for hematology and clinical chemistry determinations. Blood is collected from core study mice at the end of the study for hematology determinations. See clinical measurements:

1. Hematology:
Erythrocyte count
Mean corpuscular volume
Hemoglobin
Packed cell volume
Mean corpuscular hemoglobin
Mean corpuscular hemoglobin concentration
Erythrocyte morphologic assessment
Leukocyte count
Leukocyte differential
Reticulocyte count
Platelet count and morphologic assessment

2. Clinical Chemistry:
Sorbitol dehydrogenase (SDH)
Alkaline Phosphatase (ALP)
Creatine Kinase (CK)
Creatinine
Total Protein
Albumin
Urea Nitrogen (BUN)
Total Bile Acids
Alanine Aminotransferase (ALT)
Glucose
Cholesterol
Triglycerides
Sacrifice and pathology:
- Liver, thymus, right kidney, right testis, heart, and lung weights are recorded from all animals surviving until the end of the study.
- A complete necropsy is performed on all treated and control animals, and all tissues required for complete histopathology are trimmed, embedded, sectioned, and stained with hematoxylin and eosin for histopathologic evaluation. See necropsy list:

A complete gross necropsy is an external examination of the animal including body orifices and examination and fixation of all of the following organs/tissues from animals from all treatment groups for histopathologic examination.
Adrenal glands
Brain
Clitoral glands
Esophagus
Eyes
Femur
Gallbladder (mouse)
Gross lesions
Harderian glands
Heart and aorta
Intestine, large (cecum, colon, rectum)
Intestine, small (duodenum, jejunum, ileum)
Kidneys
Liver
Lungs and mainstem bronchi
mandibular and mesenteric
bronchial mediastinal (inhalation studies)
Mammary gland with adjacent skin
Muscle, thigh
Nerve, sciatic
Nasal cavity and nasal turbinates
Oral cavity, larynx, and pharynx
Ovaries
Pancreas
Parathyroid glands
Pituitary gland
Preputial glands
Prostate
Salivary glands
Seminal vesicles
Skin, site of application (dermal studies)
Spinal cord
Spleen
Stomach (forestomach and glandular)
Testes, epididymides, and vaginal tunics of testes
Thymus
Thyroid gland
Tissue masses
Tongue
Trachea
Urinary bladder
Uterus
Vagina
Zymbal glands

- A complete histopathologic evaluation inclusive of treatment-related gross lesions shall be done on all animals. Treatment-related lesions for target organs shall be identified and these organs plus gross lesions shall be examined to a no-effect level. TIssues examined:
Adrenal glands
Brain (3 sections including frontal cortex and basal ganglia, parietal cortex and thalamus, and cerebellum and pons)
Clitoral glands
Esophagus
Eyes
Femur, including diaphysis with marrow cavity and epiphysis (femoral condyle with epiphyseal cartilage plate, articular cartilage and articular surface)
Gallbladder (mouse)
Gross lesions
Harderian glands
Heart and aorta
Intestine, large (cecum, colon, rectum)
Intestine, small (duodenum, jejunum, ileum)
Kidneys
Larynx (inhalation studies)
Liver (2 sections including left lateral lobe and median lobe)
Lungs and mainstem bronchi
Lymph nodes
mandibular and mesenteric
bronchial & mediastinal (inhalation studies)
Mammary gland with adjacent skin
Muscle, thigh (only if neuromuscular signs were present)
Nasal cavity and nasal turbinates (3 sections)
Ovaries
Pancreas
Parathyroid glands
Pituitary gland
Preputial glands
Prostate
Salivary glands
Seminal vesicle
Skin, site of application (dermal studies)
Spinal cord and sciatic nerve (if neurologic signs were present)
Spleen
Stomach (forestomach and glandular)
Testes with epididymides
Thymus
Thyroid gland
Tissue masses
Trachea
Urinary bladder
Uterus
Other examinations:
- Tungsten concentrations in blood and urine
- Genotoxicity (micronucleus and Comet assay): Blood for Micronuclei Blood samples are taken from mice and rats at study termination for micronuclei determinations.
Clinical signs:
effects observed, non-treatment-related
Description (incidence and severity):
Nasal/Eye discharge (at Day 35) was observed in one female of control and 250 mg/L group.Ulcer/Abscess was reported (at Day 70) in one female of the 500 mg/L group.
Mortality:
no mortality observed
Description (incidence):
All female and male rats were alve after 90-day exposure to sodium tungstate.
Body weight and weight changes:
effects observed, treatment-related
Description (incidence and severity):
- Bpdy weigths of male rats exposed to 000 and 2000 mg/L were lower than vehicle controls.males.
- Body weights of female rats exposed to 2000 mg/L was lower than vehicle control females.
Food consumption and compound intake (if feeding study):
not specified
Food efficiency:
not specified
Water consumption and compound intake (if drinking water study):
effects observed, treatment-related
Description (incidence and severity):
Decreased water consumption was observed in 1000 and 2000 mg/L rats
Ophthalmological findings:
not specified
Haematological findings:
no effects observed
Description (incidence and severity):
During the 13-week phase of the study, there was no effect on hematology
Clinical biochemistry findings:
not specified
Urinalysis findings:
not specified
Behaviour (functional findings):
not specified
Immunological findings:
not specified
Organ weight findings including organ / body weight ratios:
no effects observed
Description (incidence and severity):
During the 13-week phase of the study, there was no effect on organ weights in rats
Gross pathological findings:
not specified
Neuropathological findings:
not specified
Histopathological findings: non-neoplastic:
effects observed, treatment-related
Description (incidence and severity):
- Liver heptadiaphragmatic nodule was observed in one male of the 2000 mg/L group.
- Cellular infiltration (mixed cell) was observed in one and two male rats of the control and 2000 mg/L group, respectively.
- Preputial gland cellular infiltration (lymphocyte) was observed in 2 and 4 animals of male rats in controls and 2000 mg/L groups, respectively.
- Preputial gland inflammation and acute inflammation were observed in one control male and one male of the 2000 mg/L group, respectively. Lung infiltarion was found in one male of the control group.
- Nephropathy was reported in male rats of control (n=10), 125 (n=9), 250 (n=8), 500 (n=9), 1000 (n=8) and 2000 (n=9) mg/L. Renal tubule regenaration was reported in 3 males (30%) and 10 males (100%) of the 1000 and 2000 mg/L groups.
- One female of the 2000 mg/L presented liver hepatodiaphragmatic nodule, and liver cellular infiltration (mixed cell) was reported in 3 and 2 females of the control and 2000 mg/L groups.
- Clitoral gland cellular infiltration (lymphocyte) was observed in 1 and 2 females of the control and 2000 mg/L groups, respectively.
- Lung metaplasia (osseous) was found in one female of the control group.
- Kidney cyst (focal) was found in one female of the 2000 mg/L group, and kidney cellular infiltration (lymphocyte) was found in one female of the 125 and 500 mg/L groups. Kidney mineralization wasobserve din on single female of the 2000 mg/L group.
- Kidney nephropathy was reported in female of control (n=6), 125 (n=6), 250 (n=7), 500 (n=6), 1000 (n=5) and 2000 (n=10) mg/L groups. Kidney renal tubule regeneration was reported in females of 1000 (n=3) and 2000 (n=10) mg/L groups.

Histopathological findings: neoplastic:
no effects observed
Description (incidence and severity):
Neoplasms were not identified in male or female rats
Other effects:
no effects observed
Description (incidence and severity):
Total tungsten concentrations were generally dose proportional in blood and urine. The micronucleus assay was negative in rats. The Comet assay was positive in the liver of rats but negative in the blood and kidney.
Key result
Dose descriptor:
LOAEL
Effect level:
ca. 1 000 mg/L drinking water
Based on:
test mat.
Sex:
male/female
Basis for effect level:
histopathology: non-neoplastic
Key result
Dose descriptor:
NOAEL
Effect level:
ca. 500 mg/L drinking water
Based on:
test mat.
Sex:
male/female
Basis for effect level:
histopathology: non-neoplastic
Key result
Critical effects observed:
yes
Lowest effective dose / conc.:
1 000 mg/L drinking water
System:
urinary
Organ:
kidney
Treatment related:
yes
Dose response relationship:
yes
Relevant for humans:
yes
Conclusions:
Decreased water consumption was observed in 1000 and 2000 mg/L rats. During the 13-week phase of the study, there was no effect on survival, hematology, or organ weights in rats. Renal tubule regeneration was characterized by hyperplasia of tubular epithelial cells with cytoplasmic basophilia, nuclear crowding, karyomegaly, and occasional mitotic figures. In the rats, these lesions were predominantly found in the proximal convoluted tubules of the cortex. Alterations in urine chemistry parameters were reflective of the renal damage in the high dose groups of rats. Total tungsten concentrations were generally dose proportional in blood and urine. The micronucleus assay was negative in rats. The Comet assay was positive in the liver of rats and negative in the blood and kidney of rats. The kidney appeared to be the only major target organ following exposure of rats to sodium tungstate dihydrate at drinking water cncentrations of 1000 and 2000 mg/L.
Executive summary:

No oral repeated dose toxicity data of sufficient quality are available for tungsten carbide (target substance). However, oral repeated dose toxicity data are available for sodium tungstate (source substance), which will be used for reading across. Due to lower water solubility and lower toxicity for the target substance compared to the source substance, the resulting read across from the source substance to the target substance is appropriate as a conservative estimate of potential toxicity for this endpoint. In addition, read across is appropriate because the classification and labelling is more protective for the source substance than the target substance, the PBT/vPvB profile is the same, and the dose descriptors are, or are expected to be, lower for the source substance. For more details, refer to the read-across category approach included in the Category section of this IUCLID submission and/or as an Annex in the CSR.

Endpoint conclusion
Endpoint conclusion:
adverse effect observed
Dose descriptor:
BMDL10
102 mg/kg bw/day
Study duration:
subchronic
Species:
rat
Quality of whole database:
The reliability of this study for the substance tested is a K1
System:
urinary
Organ:
kidney

Repeated dose toxicity: inhalation - systemic effects

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed
Dose descriptor:
NOAEC
650 mg/m³
Study duration:
subchronic
Species:
rat
Quality of whole database:
The reliability of this study for the substance tested is a K1, but in application of read-across to a different substance ECHA’s guidance specifies that the score can be a maximum of K2. Due to higher water solubility and greater in vitro bioaccessibility in synthetic alveolar, lysosomal, and interstitial fluids simulating inhalation exposure for the source substance, tungsten blue oxide (TBO) as compared to the target substance (tungsten metal) and lack of toxicity from acute toxicity studies for the target and source substances, toxicity data on the target substance is expected to represent a worse case, so read-across is appropriate between these substances. In addition, read-across is appropriate for this endpoint because the classification and labelling for human health toxicity endpoints is the same for the source and target substances, the PBT/vPvB profile is the same, and the dose descriptors are, or are expected to be, sufficiently similar or more conservative for the target substance. For more details, refer to the attached description of the read-across approach.

Repeated dose toxicity: inhalation - local effects

Endpoint conclusion
Endpoint conclusion:
no study available

Repeated dose toxicity: dermal - systemic effects

Endpoint conclusion
Endpoint conclusion:
no study available

Repeated dose toxicity: dermal - local effects

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

Justification for classification or non-classification

Repeated Dose Toxicity - Oral Route:

No repeat dose toxicity data of sufficient quality were available for tungsten carbide; however, data were available for sodium tungstate, which will be used for reading-across. The LOAEL and NOAEL from the 90-day oral toxicity study were deemed to be 125 mg/kg/day and 75 mg/kg/day, respectively, based on histopathological effects reported in the kidneys of the 125 and 200 mg/kg/day dose groups. The BMDL10 derived from this data was calculated to be 102 mg/kg/day. The cutoff range for a category 2 classification under CLP for a 90-day oral toxicity study is between 10 and 100 mg/kg/day. The LOAEL of 125 mg/kg/day identified from the repeat dose oral toxicity study was greater than 100 mg/kg/day. In addition, the benchmark dose (BMDL10) based on the data from the 90-day oral toxicity studies, and using the kidney as the target organ, was calculated to be 102 mg/kg/day. Because the LOAEL from the 90-day study as well as the calculated BMDL10 were greater than the 100 mg/kg/day category 2 cutoff level under CLP, then a classification is not warranted.

Repeated Dose Toxicity - Inhalation Route:

No effects were reported in the 90 -day inhalation toxicity study on WC on which a classification could be based and the only dose tested was well below the classification criteria. Therefore, the dose from the 90-day inhalation toxicity study was insufficient for determining classification. Therefore, the 28-day inhalation toxicity study on TBO was used for read across. The cutoff range for a category 2 classification under CLP for a 28-day inhalation toxicity study is between 0.06 and 0.6 mg/L. The NOAEL from the 28-day inhalation toxicity study on TBO was > 0.65 mg/L. Because the NOAEL from the 28-day study was greater than the 0.6 mg/L category 2 cutoff level, classification is not warranted.