Registration Dossier

Administrative data

Workers - Hazard via inhalation route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
150 mg/m³
Most sensitive endpoint:
repeated dose toxicity
DNEL related information
Overall assessment factor (AF):
3
Modified dose descriptor starting point:
NOAEC
Acute/short term exposure
Hazard assessment conclusion:
no-threshold effect and/or no dose-response information available
DNEL related information

Local effects

Long term exposure
Hazard assessment conclusion:
no-threshold effect and/or no dose-response information available
Acute/short term exposure
Hazard assessment conclusion:
no-threshold effect and/or no dose-response information available
DNEL related information

Workers - Hazard via dermal route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
25 mg/kg bw/day
Most sensitive endpoint:
repeated dose toxicity
DNEL related information
Overall assessment factor (AF):
24
Modified dose descriptor starting point:
NOAEL
Acute/short term exposure
Hazard assessment conclusion:
no-threshold effect and/or no dose-response information available
DNEL related information

Local effects

Long term exposure
Hazard assessment conclusion:
no-threshold effect and/or no dose-response information available
Acute/short term exposure
Hazard assessment conclusion:
no-threshold effect and/or no dose-response information available

Workers - Hazard for the eyes

Additional information - workers

Development and reproductive DNELs have not been derived because the reproductive toxicity NOAEL was much higher than the systemic toxicity subchronic NOAEL in rats. The rat was chosen as it is considered a better paradigm for humans than the mouse, as the mouse is considered more susceptible to developmentally toxic effects secondary to maternal stress than is the rat.

General Population - Hazard via inhalation route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
32 mg/m³
Most sensitive endpoint:
repeated dose toxicity
DNEL related information
Overall assessment factor (AF):
5
Modified dose descriptor starting point:
NOAEC
Acute/short term exposure
Hazard assessment conclusion:
no-threshold effect and/or no dose-response information available
DNEL related information

Local effects

Long term exposure
Hazard assessment conclusion:
no-threshold effect and/or no dose-response information available
Acute/short term exposure
Hazard assessment conclusion:
no-threshold effect and/or no dose-response information available
DNEL related information

General Population - Hazard via dermal route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
11 mg/kg bw/day
Most sensitive endpoint:
repeated dose toxicity
DNEL related information
Overall assessment factor (AF):
56
Modified dose descriptor starting point:
NOAEL
Acute/short term exposure
Hazard assessment conclusion:
no-threshold effect and/or no dose-response information available
DNEL related information

Local effects

Long term exposure
Hazard assessment conclusion:
no-threshold effect and/or no dose-response information available
Acute/short term exposure
Hazard assessment conclusion:
no-threshold effect and/or no dose-response information available

General Population - Hazard via oral route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
11 mg/kg bw/day
Most sensitive endpoint:
repeated dose toxicity
DNEL related information
Overall assessment factor (AF):
56
Modified dose descriptor starting point:
NOAEL
Acute/short term exposure
Hazard assessment conclusion:
exposure based waiving
DNEL related information

General Population - Hazard for the eyes

Additional information - General Population

Development and reproductive DNELs have not been derived because the reproductive toxicity NOAEL was much higher than the systemic toxicity subchronic NOAEL in rats. The rat was chosen as it is considered a better paradigm for humans than the mouse, as the mouse is considered more susceptible to developmentally toxic effects secondary to maternal stress than is the rat.