Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 295-551-9 | CAS number: 92062-36-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Toxicity to aquatic algae and cyanobacteria
Administrative data
Link to relevant study record(s)
Description of key information
The data used to characterize the acute aquatic toxicity of C9 aromatic hydrocarbons are from two short-term toxicity studies with Pseudokirchneriella subcapitata, following standard test guidelines. These results indicate that C9 aromatics hydrocarbons causes moderate acute toxicity to freshwater green algae at a range of 2.9 to >= 7.9 mg/L (growth rate), and 2.6 to >= 3.8 mg/L (biomass), based on nominal loading of the test substance in water, and >=0.42 mg/L and >=0.29 mg/ L, respectively, based on measured concentrations
Key value for chemical safety assessment
Additional information
The toxicity of C9 aromatics hydrocarbons as measured by biomass and growth rate to the green alga (Pseudokirchneriella subcapitata formerly Selenastrum capricornutum) was evaluated in freshwater. Under the conditions of the studies, C9 aromatic hydrocarbons produced toxicity based on inhibition of growth rate at 2.9 to >= 7.9, and reduction in biomass at a range of 2.6 to >= 3.8 mg/L, based on nominal loading of the test substance in water, and >=0.42 mg/L and >=0.29 mg/ L, respectively, based on measured concentrations.
In this methodology, different loadings of the substance are added to the test medium and equilibrium between the water and the hydrocarbons is achieved according to their specific water solubility. The hydrocarbon concentrations at equilibrium will be characteristic of the loading of the substance, and therefore toxicity values from WAF studies are expressed as effect loadings or lethal loadings (EL or LL), not as concentrations. These effect loadings are used to determine environmental classifications. The WAF methodology is widely accepted for the testing of complex hydrocarbon substances and other UVCBs, and it has been incorporated in different guidance documents, including the REACH guidance (see document in Section 13)
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.