Registration Dossier

Physical & Chemical properties

Water solubility

Currently viewing:

Administrative data

Link to relevant study record(s)

Description of key information

Solubility in water at 20°C: 2244 mg/L (pH 3.86 )
5.30 mg/L (pH 4.05)
3.39 mg/L (pH 7.08)

Key value for chemical safety assessment

Water solubility:
3.39 mg/L
at the temperature of:
20 °C

Additional information

The water solubility of partially unsaturated TEA-Esterquat was investigated in a study conducted according to OECD Guideline 105 and EU-Method A.6 and using HPLC/MS/MS for quantification. HPLC/MS/MS proved to be a suitable analytical tool. Based on the results of the preliminary test, the flask method was used for the determination of the water solubility. In the main test, on the one hand the test item was dissolved in distilled water and the water solubility was measured at 10, 20, and 30°C without adjustment of the pH and on the other hand the water solubility of the test item was determined in buffered systems (pH 4, 7, and 9) at 20°C. The following results were obtained:

1. Solubility in water without pH adjustment (distilled water being in equilibrium with atmospheric carbon dioxide) at 10, 20, and 30°C: 2171 (pH 3.73, 10°C), 2244 (pH 3.86, 20°C), and 2359 mg/L (pH 3.83, 30°C).The water solubility was not found to be temperature dependent.

2. Solubility in buffered water at pH 4-9 and 20°C: 5.30 (pH 4.05), 3.39 (pH 7.08), and 19.4 mg/L (pH 9.11; at 20°C each). Based on the results in buffered systems it can be assumed that the water solubility is dependent on pH. However, due to the bipolarity of the molecules, it is noted that the counter ions phosphate, citrate and borate, respectively obviously have a more distinct influence on solubility than pH, since the solubility is almost three orders of magnitude below that in pure water. Finally, at higher pH values, a change in composition due to hydrolysis may have a greater influence on the absolute solubility of the test item (see chapter 5.1.2).