Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 269-056-3 | CAS number: 68186-94-7 This substance is identified in the Colour Index by Colour Index Constitution Number, C.I. 77494.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Sediment toxicity
Administrative data
Link to relevant study record(s)
- Endpoint:
- sediment toxicity: long-term
- Data waiving:
- study scientifically not necessary / other information available
- Justification for data waiving:
- other:
Reference
Description of key information
Iron (hydr)oxides in powder and nano-form are not classified as harmful, toxic or very toxic to aquatic life or may cause long lasting harmful effects to aquatic life. Iron (hydr)oxides in powder and nano-form is also not an unclassified hazard to the aquatic environment. Based on the poor solubility, bioavailability, lack of a potential for bioaccumulation and toxicity to aquatic organisms and considering ubiquitousness of iron (hydr)oxides in sediment and essentiality of iron, iron (hydr)oxides in powder and nano-form are also not considered an unclassified hazard to the sediment compartment.
Further, a comprehensive evaluation of whether the relative contributions of anthropogenic iron to the existing natural iron pool in soils and sediments are relevant in terms of added amounts and in terms of toxicity was performed (see "White Paper on exposure based waiving for iron and aluminium in soil and sediments, 2010", attached in section 6.0) and concludes as follows: The justification for exposure based waiving of conducting additional soil and sediment tests should be based on information on absence of exposure or in the case of metals on information showing that the contribution of the anthropogenic emissions are overruled by the already present natural background. Exposure based waiving is justified for iron since results indicate that the relative contribution of anthropogenic iron to the already present natural iron pool in soils and sediments is not relevant in terms of added amounts and in terms of toxicity.
Key value for chemical safety assessment
Additional information
Ubiquitousness: Iron is a major constituent of the lithosphere, comprising approximately 5.1%. The median total iron content of European stream sediment expressed as Fe (XRF analysis) is 2.50% ranging from 0.08 to 12.80% (Salminen et al. 2005). In primary minerals iron occurs largely as ferromagnesium minerals (Salminen et al. 2005). These minerals dissolve during weathering and released iron precipitates as ferric oxides and hydroxides in sediments. The solubility of iron in sediments is largely governed by iron (hydr)oxides with redox, pH and hydroxide formation being key modifying factors. Organic matter in sediments is stabilised by sorption to iron (hydr)oxides suggesting that iron phases serve as sink for organic carbon involved in its long-term storage and contribute to the global cycles of carbon, oxygen and sulfur. Sediment concentrations of manganese range from 24.0 to 18,898.0 mg Mn/kg with a median of 447.5 mg Mn/kg.
Iron exposure, bioavailability and uptake from porewater by soil organisms are under environmentally relevant and tolerable conditions (pH and redox) limited by the solubility of naturally occurring ferric (hydr)oxides. Poorly soluble synthetic iron oxides are not expected to influence any soil parameter, including dissolved and bioavailable iron concentrations.
Essentiality: Iron is essential for almost all living organisms as it is involved in a wide variety of important metabolic processes including oxygen and electron transport, gas sensing and DNA repair and replication and regulation of gene expression. Thus, iron is critical to the survival of living organisms, including terrestrial bacteria, plants and invertebrates. Due to its poor solubility under environmentally relevant conditions, iron is not readily available, and soil organisms have developed sophisticated pathways to import, chaperone, sequester, and export iron. Thus, iron is an essential element that is homeostatically controlled by all organisms.
Manganese is ubiquitous in the environment and an essential trace element. Manganese acts as catalytic or structural component of larger molecules, which occupy key roles in essential metabolic pathways of microorganisms, plants, and animals.
Bioaccumulation: The existence of saturable uptake mechanisms, the presence of significant amounts of stored metal in organisms, and the ability of some organisms to regulate bioaccumulated metal within certain ranges are all thought to be responsible for the inverse relationship that has been frequently reported between bioaccumulation factors (BAFs) and metal exposure concentrations. In these cases, higher BAFs are associated with lower exposure concentrations and also can be associated with lower tissue concentrations within a given BAF study. This is contrary to the implicit assumption that higher BAFs indicate higher metal hazard. Nearly all metals, including iron, have BAFs >1000 in natural, healthy ecosystems with aqueous iron concentrations at background. Bioaccumulation factors for metals are clearly inversely related to water, sediment and soil concentrations (Adams, 2011).
For iron and manganese, essential, homeostatically controlled elements, the bioaccumulation potential is considered to be low. Manganese as essential nutrient is actively assimilated and utilized by plants and animals and does not biomagnify. Differences in iron uptake rates are related to essential needs, varying with the species, size, life stage, seasons etc. Iron homeostatic mechanisms are applicable across species with specific processes being active depending on the species, life stages. The available evidence shows the absence of iron biomagnification across the trophic chain both in the aquatic and terrestrial food chains. The existing information suggests that iron does not biomagnify, but rather that it tends to exhibit biodilution. Differences in sensitivity among species are not related to the level in the trophic chain but to the capability of internal homeostasis and detoxification (see "White Paper on waiving for secondary poisoning for Al and Fe compounds, 2010" attached in section 6).
References:
Adams B, 2011. Bioaccumulation of metal substances by aquatic organisms, OECD meeting, Paris September 7-8, 2011.
Lindsay WL, 1979. Chemical equilibria in soils. The Blackburn Press.
Salminen R et al. 2005. Geochemical Atlas of Europe. Part 1: Background Information, Methodology and Maps. http://weppi.gtk.fi/publ/foregsatlas/index.php.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.