Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 931-285-8 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Key value for chemical safety assessment
Skin sensitisation
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (not sensitising)
- Additional information:
The hydroformylation process, involves the preparation of oxygenated organic compounds by the reaction of carbon monoxide and hydrogen (synthesis gas) with olefinic carbon compounds. Olefins which do not react, and paraffins produced by side reactions are the primary components of Mixed LOF.
The oxo reaction is performed under hydroformylation conditions in the presence of a carbonylation catalyst or catalyst precursor such as dicobaltoctacarbonyl, and results in the formation of a compound (e.g. an aldehyde) which has one more carbon atom in its molecular structure than the feedstock. Subsequent hydrogenation of the hydroformylation product leads to formation of the desired product alcohols. By virtue of the nature of the feedstock commonly available to industry, and indeed of the catalyst and reaction parameters employed, the hydroformylation reaction inevitably yields a range of products due to the numerous secondary reactions which take place.
Mixed LOF (Alkenes, C6-10, hydroformylation products, low-boiling; no CAS RN; EC number 931-285-8) is a byproduct from C7-C11 alcohol production. In the hydroformylation process olefins (alkenes) are catalytically reacted with carbon monoxide and hydrogen, resulting in a range of products including primary alcohols. Alcohols are separated from the reaction mixture by distillation, with the remaining LOF containing unreacted olefins (alkenes) and paraffins (alkanes), frequently of the branched [iso-] form. Compositional analysis indicates Mixed LOF is approximately a 50/50% mixture of olefins and paraffins with a boiling point range of 102 – 182 ºC.
While toxicity data are not available for LOF, based on composition and physical chemical characteristics it is appropriate to use data from naphtha petroleum streams with low levels of aromatic groups and carbon number ranges similar to C6-10. Naphtha streams are derived from the same original feedstock (crude petroleum) with a key process difference – feedstocks to the hydroformylation process (e.g., propylene, butene, and pentenes and combinations thereof) have very low to neglible aromatic material (e.g., benzene or toluene). Thus, use of naphtha streams can generally be considered a conservative read-across approach.
Light Catalytic Cracked Naphtha (LCCN; CAS No. 64741-55-5, consisting of hydrocarbons derived from a catalytic cracking process in the range of 4 to 11 carbons with a boiling range of approximately 65 to 230 degrees centigrade;) or Light Straight Run Naphtha (LSRN; CAS No. 64741-46-4, 64741-46-4, consisting predominantly of aliphatic [paraffinic and isoparaffinic] hydrocarbons in the range of 4 to 10 carbons and boiling between -20 to 180 degree centigrade) as read-across.
In the human literature, there is no evidence of allergic contact dermatitis to either gasoline or naphtha blending streams. In laboratory animals, neither gasoline nor naphtha blending streams induced dermal sensitization in Buehler tests in rabbits.
Justification for classification or non-classification
No classification for irritation is indicated according to the general classification and labeling requirements for dangerous substances and preparations (Directive 67-548-EEC) or the classification, labeling and packaging (CLP) regulation (EC) No 1272/2008.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.