Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 252-744-2 | CAS number: 35836-73-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- weight of evidence
- Study period:
- 14 February to 31 March 2014
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
- Remarks:
- Well conducted and well described study in accordance with GLP and OECD Guideline 471 without any deviation.
Cross-referenceopen allclose all
- Reason / purpose for cross-reference:
- reference to same study
- Reason / purpose for cross-reference:
- reference to other study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 014
- Report date:
- 2014
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- Principles of method if other than guideline:
- Not applicable
- GLP compliance:
- yes
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- (1R)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-ethanol
- EC Number:
- 252-744-2
- EC Name:
- (1R)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-ethanol
- Cas Number:
- 35836-73-8
- Molecular formula:
- C11H18O
- IUPAC Name:
- (1R,5S)-2-(6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl) ethanol
- Reference substance name:
- Non identified impurities
- Molecular formula:
- Not applicable
- IUPAC Name:
- Non identified impurities
- Test material form:
- liquid
- Details on test material:
- Batch No.: 141767
Purity: 98.1%
Name of test material (as cited in study report): NOPOL
Physical state: colourless to very pale yellow liquid
Storage conditions: +2°C to +8°C, under nitrogen and protected from light
Expiry date: 01 April 2015
Constituent 1
impurity 1
Method
- Target gene:
- None
Species / strain
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Details on mammalian cell type (if applicable):
- Not applicable
- Additional strain / cell type characteristics:
- not applicable
- Metabolic activation:
- with and without
- Metabolic activation system:
- 10 % S9 mix; S9 fraction prepared from liver homogenates of male Sprague Dawley rats induced with Aroclor 1254
- Test concentrations with justification for top dose:
- Experiment 1 (plate-incorporation method):
- TA1535, TA1537, TA98, TA100 and TA102: 5, 16, 50, 160, 500, 1600 and 5000 μg/plate, with and without S9-mix
Experiment 2 (plate-incorporation method without S9 mix; preincubation method with S9 mix):
- TA1535, TA1537, TA98, TA100 and TA102: 25, 50, 100, 200, 400, 800 and 1600 μg/plate, with and without S9-mix
Experiment 3 (preincubation method):
- TA1535, TA1537, TA98, TA100 and TA102: 6.25, 12.5, 25, 50, 100, 200 and 400 μg/plate, with S9-mix - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: DMSO
- Justification for choice of solvent/vehicle: Preliminary solubility data indicated that Nopol was soluble in anhydrous analytical grade dimethyl sulphoxide (DMSO) at concentrations up to at least 100 mg/mL. Therefore, DMSO was selected as vehicle.
- Test substance preparation: Test substance stock solutions were prepared by formulating Nopol under subdued lighting in DMSO with the aid of vortex mixing as required, to give the maximum required treatment concentration. Subsequent dilutions were made using DMSO. The test article solutions were protected from light and used within approximately 4 h of initial formulation.
Controlsopen allclose all
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- 9-aminoacridine
- 2-nitrofluorene
- sodium azide
- mitomycin C
- Remarks:
- without metabolic activation
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- Remarks:
- DMSO
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- benzo(a)pyrene
- other: 2-aminoanthracene
- Remarks:
- with metabolic activation
- Details on test system and experimental conditions:
- SOURCE OF TEST SYSTEM:
Strains TA98, TA1535 and TA1537 were originally obtained from the UK NCTC. Strains TA100 and TA102 were derived from cultures originally obtained from Covance Laboratories Inc., USA.
METHOD OF APPLICATION: In agar (plate incorporation); preincubation
DURATION
- Preincubation period: 20 minutes at 37 ± 1 °C, with shaking
- Incubation period: Plates were inverted and incubated at 37 ± 1 °C in the dark for 3 days.
NUMBER OF REPLICATIONS:
- Vehicle and positive controls were included in quintuplicate and triplicate plates, respectively.
- Treatment (test item) groups were included in triplicate plates
DETERMINATION OF CYTOTOXICITY
- Method: The background lawns of the plates were examined for signs of toxicity. Other evidence of toxicity may have included a marked reduction in revertants compared to the concurrent vehicle controls and/or a reduction in mutagenic response.
OTHER:
- Strain characteristics: The inocula were taken from master plates or vials of frozen cultures, which had been checked for strain characteristics (histidine dependence, rfa character, uvrB character and resistance to ampicillin or ampicillin plus tetracycline). Checks were carried out according to Maron and Ames, 1983 and De Serres and Shelby, 1979.
- Colony counting: Colonies were counted electronically using a Sorcerer Colony Counter (Perceptive Instruments) or manually where confounding factors such as bubbles, splits in the agar or contamination affected the accuracy of the automated counter. The background lawn was inspected for signs of toxicity. - Evaluation criteria:
- For valid data, the test article was considered to be mutagenic if:
1. A concentration related increase in revertant numbers was ≥1.5-fold (in strain TA102), 2-fold (in strains TA98 or TA100) or 3-fold (in strains TA1535 or TA1537) the concurrent vehicle control values.
2. Any observed response was reproducible under the same treatment conditions.
The test article was considered positive in this assay if both of the above criteria were met.
The test article was considered negative in this assay if either of the above criteria were met.
Results which only partially satisfied the above criteria were dealt with on a case-by-case basis. Biological relevance was taken into account, for example consistency of response within and between concentrations and (where applicable) between experiments. - Statistics:
- The presence or otherwise of a concentration response was checked by non-statistical analysis, up to limiting levels (for example toxicity, precipitation or 5000 μg/plate). However, adequate interpretation of biological relevance was of critical importance (OECD, 1997; ICH S2(R1), 2011).
Results and discussion
Test results
- Key result
- Species / strain:
- S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not applicable
- Positive controls validity:
- valid
- Additional information on results:
- TEST-SPECIFIC CONFOUNDING FACTORS
- Precipitation: No precipitation was observed on the test plates during scoring, in any of the experiments performed.
- Other confounding effects: None
COMPARISON WITH HISTORICAL CONTROL DATA: Mean vehicle control counts fell within the laboratory’s historical ranges.
ADDITIONAL INFORMATION ON CYTOTOXICITY:
- Experiment 1: Following the treatment, evidence of toxicity in the form of a slight thinning of the background bacterial lawn, was observed at 500 μg/plate in all strains in the absence and presence of S-9. A complete killing of the test bacteria was observed at 1600 μg/plate and above in all strains in the absence and presence of S-9. In addition, a reduction in revertant numbers was observed at 160 μg/plate in strain TA1537 only in the absence and presence of S-9.
- Experiment 2: Following the treatment, evidence of toxicity ranging from a diminution of the background bacterial lawn, with or without a concurrent marked reduction in revertant numbers, to a complete killing of the test bacteria was observed in all strains from 800 and from 400 μg/plate in the absence and presence of S-9, respectively. In addition, a reduction in revertant numbers was observed at 400 μg/plate in strain TA1537 in the absence of S-9 only. Since mutation data were only available for four concentrations in the presence of S-9 for all tester strains due to toxicity, a further Experiment (Experiment 3) was performed.
- Experiment 3: Following the treatment, evidence of toxicity ranging from a slight thinning of the background bacterial lawn, with or without a concurrent marked reduction in revertant numbers, to a complete killing of the test bacteria was observed at 200 μg/plate and above in all strains.
Any other information on results incl. tables
None
Applicant's summary and conclusion
- Conclusions:
- The test item is not considered as mutagenic in S. typhimurium (TA1535, TA1537, TA98, TA100 and TA102) strains, with and without metabolic activation.
- Executive summary:
In a reverse gene mutation assay in bacteria, performed according to Guideline OECD 471 and in compliance with GLP, strains of Salmonella typhimurium (TA1535, TA1537, TA98, TA100 and TA102) were exposed to the test item, Nopol, at the concentrations below.
Experiment 1 (plate-incorporation method):
- TA1535, TA1537, TA98, TA100 and TA102: 5, 16, 50, 160, 500, 1600 and 5000 μg/plate, with and without S9-mix
Experiment 2 (plate-incorporation method without S9 mix; preincubation method with S9 mix):
- TA1535, TA1537, TA98, TA100 and TA102: 25, 50, 100, 200, 400, 800 and 1600 μg/plate, with and without S9-mix
Experiment 3 (preincubation method):
- TA1535, TA1537, TA98, TA100 and TA102: 6.25, 12.5, 25, 50, 100, 200 and 400 μg/plate, with S9-mix
Metabolic activation system was S9 fraction prepared from liver homogenates of male Sprague Dawley rats induced with Aroclor 1254. Vehicle and positive controls were also included.
In Experiment 1, evidence of toxicity was observed at 160 and/or 500 μg/plate and above in all strains in the absence and presence of S-9. In Experiment 2, evidence of toxicity was observed at 800 μg/plate and above in all strains in the absence of S-9 and at 400 μg/plate and above in the presence of S-9 in all strains and in strain TA1537 in the absence of S-9 only. Since mutation data were only available for four concentrations in the presence of S-9 for all tester strains due to toxicity, a further Experiment (Experiment 3) was performed. In Experiment 3, evidence of toxicity was observed at 200 μg/plate and above in all strains.
The mean numbers of revertant colonies fell within acceptable ranges for vehicle control treatments, and were elevated by positive control treatments. No significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, at any dose level either with or without metabolic activation.
Therefore, the test item is not considered as mutagenic in this bacterial system.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.