Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 212-454-9 | CAS number: 818-61-1
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 27 Sep 2016 to 14 Oct 2016
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 016
- Report date:
- 2016
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Version / remarks:
- 21 Jul 1997
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Version / remarks:
- 30 May 2008
- Qualifier:
- according to guideline
- Guideline:
- EPA OPPTS 870.5100 - Bacterial Reverse Mutation Test (August 1998)
- Version / remarks:
- Aug 1998
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- 2-hydroxyethyl acrylate
- EC Number:
- 212-454-9
- EC Name:
- 2-hydroxyethyl acrylate
- Cas Number:
- 818-61-1
- Molecular formula:
- C5H8O3
- IUPAC Name:
- 2-hydroxyethyl acrylate
- Test material form:
- not specified
- Details on test material:
- not specified
Constituent 1
- Specific details on test material used for the study:
- - Name of test substance: Hydroethylacrylate
- Test substance No.: 16/0173-1
- Analytical purity: 99.6 g/100g
- Physical state, appearance: liquid, colorless, clear
Method
- Target gene:
- - S. typhimurium: his-locus
- E. coli: trp-locus
Species / strainopen allclose all
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
- Species / strain / cell type:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Metabolic activation system:
- phenobarbital and ß-napthoflavone induced male rat liver S9 mix
- Test concentrations with justification for top dose:
- 1st Experiment: 0; 33; 100; 333; 1000; 2500 and 5000 μg/plate (with and without S9 mix) Standard plate test
2nd Experiment: 0; 10; 33; 100; 333; 1000 and 2500 μg/plate (TA strains); 0; 33; 100; 333; 1000; 2500 and 5000 μg/Plate (E.coli) (with and without S9 mix) Preincubation test; No mutagenicity was observed in the standard plate test. Due to toxicity, the doses was adjusted in the preincubaton test.
3rd Experiment: 0; 1000; 2000; 2500; 3000; 4000 and 5000 μg/plate (E.coli) (with S9 mix) Preincubation test; Increased number of rebertants was observed in the preincubation test. - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: water
- Justification for choice of solvent/vehicle: good solubility of the test substance in water
Controls
- Untreated negative controls:
- yes
- Remarks:
- sterility control
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- 4-nitroquinoline-N-oxide
- 9-aminoacridine
- other: 2-aminoanthracene (2-AA); N-methyl-N'-nitro-N-nitrosoguanidine (MNNG); 4-nitro-o-phenylenediamine (NOPD)
- Details on test system and experimental conditions:
- STANDARD PLATE TEST
The experimental procedure of the standard plate test (plate incorporation method) was based on the method of Ames et al. (1, 2).
Salmonella typhimurium:
Test tubes containing 2-mL portions of soft agar (overlay agar), which consists of 100 mL agar (0.8% [w/v] agar + 0.6% [w/v] NaCl) and 10 mL amino acid solution (minimal amino acid solution for the determination of mutants: 0.5 mM histidine + 0.5 mM biotin) were kept in a water bath at about 42 - 45°C, and the remaining components were added in the following order:
0.1 mL test solution or vehicle (negative control)
0.1 mL fresh bacterial culture
0.5 mL S9 mix (with metabolic activation)
or
0.5 mL phosphate buffer (without metabolic activation)
After mixing, the samples were poured onto Minimal glucose agar plates (Moltox Molecular Toxicology, Inc.; Boone, NC 28607; USA) within approx. 30 seconds. After incubation at 37°C for 48 – 72 hours in the dark, the bacterial colonies (his+ revertants) were counted. The colonies were counted using the Sorcerer Image Analysis System with the software program Ames Study Manager (Perceptive Instruments Ltd., Haverhill, UK). Colonies were counted manually, if precipitation of the test substance hinders the counting using the Image Analysis System.
Escherichia coli:
Test tubes containing 2-mL portions of soft agar (overlay agar), which consists of 100 mL agar (0.8% [w/v] agar + 0.6% [w/v] NaCl) and 10 mL amino acid solution (minimal amino acid solution for the determination of mutants: 0.5 mM tryptophan) were kept in a water bath at about 42 - 45°C, and the remaining components were added in the following order:
0.1 mL test solution or vehicle (negative control)
0.1 mL fresh bacterial culture
0.5 mL S9 mix (with metabolic activation)
or
0.5 mL phosphate buffer (without metabolic activation)
After mixing, the samples were poured onto Minimal glucose agar plates (Moltox Molecular Toxicology, Inc.; Boone, NC 28607; USA) within approx. 30 seconds. After incubation at 37°C for 48 – 72 hours in the dark, the bacterial colonies (trp+ revertants) were counted. The colonies were counted using the Sorcerer Image Analysis System with the software program Ames Study Manager (Perceptive Instruments Ltd., Haverhill, UK). Colonies were counted manually, if precipitation of the test substance hinders the counting using the Image Analysis System.
PREINCUBATION TEST
The experimental procedure was based on the method described by Yahagi et al. (7) and Matsushima et al. (8). 0.1 mL test solution or vehicle, 0.1 mL bacterial suspension and 0.5 mL S9 mix (with metabolic activation) or phosphate buffer (without metabolic activation) were incubated at 37°C for the duration of about 20 minutes using a shaker. Subsequently, 2 mL of soft agar was added and, after mixing, the samples were poured onto the agar plates within approx. 30 seconds. After incubation at 37°C for 48 – 72 hours in the dark, the bacterial colonies were counted. The colonies were counted using the Sorcerer Image Analysis System with the software program Ames Study Manager (Perceptive Instruments Ltd., Haverhill, UK). Colonies were counted manually, if precipitation of the test substance hindered the counting using the Image Analysis System.
DETERMINATION OF CYTOTOXICITY
Toxicity detected by a:
- decrease in the number of revertants (factor ≤ 0.6)
- clearing or diminution of the background lawn (= reduced his- or trp- background growth)
was recorded for all test groups both with and without S9 mix in all experiments and indicated in the tables. Single values with a factor ≤ 0.6 were not detected as toxicity in low dose groups. - Evaluation criteria:
- ACCEPTANCE CRITERIA
Generally, the experiment was considered valid if the following criteria were met:
- The number of revertant colonies in the negative controls was within the range of the historical negative control data for each tester strain
- The sterility controls revealed no indication of bacterial contamination
- The positive control substances both with and without S9 mix induced a distinct increase in the number of revertant colonies within the range of the historical positive control data or above
- Fresh bacterial culture containing approximately 10^9 cells per mL were used.
ASSESSMENT CRITERIA
The test substance was considered positive in this assay if the following criteria were met:
- A dose-related and reproducible increase in the number of revertant colonies, i.e. at least doubling (bacteria strains with high spontaneous mutation rate, like TA 98, TA 100 and E.coli WP2 uvrA) or tripling (bacteria strains with low spontaneous mutation rate, like TA 1535 and TA 1537) of the spontaneous mutation rate in at least one tester strain either without S9 mix or after adding a metabolizing system.
A test substance was generally considered non-mutagenic in this test if:
- The number of revertants for all tester strains were within the range of the historical negative control data under all experimental conditions in at least two experiments carried out independently of each other.
Results and discussion
Test resultsopen allclose all
- Key result
- Species / strain:
- S. typhimurium, other: TA1535, TA 100, TA 1537, TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Remarks:
- A bacteriotoxic effect was observed depending on the strain and the conditions from about 100 µg/plate onward.
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- cytotoxicity
- Remarks:
- A bacteriotoxic effect was observed depending on the strain and the conditions from about 100 µg/plate onward.
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- SOLUBILITY: No precipitation of the test substance was found with and without S9 mix.
TOXICITY: A bacteriotoxic effect was observed depending on the strain and test conditions from about 100 μg/plate.
MUTAGENICITY: A relevant increase in the number of his+ or trp+ revertants (factor ≥ 2: TA 100, TA 98 and E.coli WP2 uvrA or factor ≥ 3: TA 1535 and TA 1537) was not observed in the standard plate test or in the preincubation test without S9 mix or after the addition of a metabolizing system. However, using the tester strain E.coli WP2 uvrA with S9 mix in the preincubation test a single increase in the numbers of trp+ revertants was observed at a concentration of 2500 μg/plate (factor 2.8). In a repeat experiment (called 3rd Experiment) this finding was not reproduced and therefore these findings have to be regarded as biological irrelevant.
Any other information on results incl. tables
result tables see attachment
Applicant's summary and conclusion
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.