Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 238-485-8 | CAS number: 14484-69-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Due to the fact that potassium tetrafluoroaluminate is an inorganic substance, only abiotic degradation can be considered. As no information is available on abiotic degradation of potassium tetrafluoroaluminate, data from its structural analogue cryolite (Na3AlF6) is taken into account. In a dissociation and acid/base equilibrium study cryolite was observed to easily dissociate in water into various ions (Dykeman, 1985). Based on the structural analogy it can be expected that also potassium tetrafluoroaluminate will easily dissociate into various ions in water.
As cryolite dissociates in water and the risks are assumed to be determined by fluoride, it is more appropriate to assess the bioaccumulation and adsorption behaviour of fluoride. The availability of inorganic substances and or its dissociated ions for uptake may vary depending on factors such as pH, hardness, temperature and redox conditions, all of which may affect speciation. BCF values will therefore be influenced by water chemistry. A BCF value of 2 L/kg ww as determined for fluoride will be used in the assessment. In a column leaching test, Koc values varying from 603 - 6502 were found for fluoride in 4 different soils, tested at cryolite concentrations varying from 5 - 50 ppm (Dykeman, 1985). As the percentage of fluoride in the molar weight in both substances is practically identical, namely 54% for cryolite and 53.5% for potassium tetrafluoroaluminate, similar Koc values can be expected for potassium tetrafluoroaluminate and it is considered that potassium tetrafluoroaluminate will show a similar behaviour in soil. The geometric mean of 1498 (log Koc 3.18) will be used in the assessment.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.