Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

Prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Disodium [5-chloro-3-[[4,5-dihydro-3-methyl-5-oxo-1-(3-sulphophenyl)-1H-pyrazol-4-yl]azo]-2-hydroxybenzene-1-sulphonato(4-)]hydroxychromate(2-); Acid Red 183 (6408-31-7). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. Disodium [5-chloro-3-[[4,5-dihydro-3-methyl-5-oxo-1-(3-sulphophenyl)-1H-pyrazol-4-yl]azo]-2-hydroxybenzene-1-sulphonato(4-)]hydroxychromate(2-); was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro. Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation

Link to relevant study records
Reference
Endpoint:
in vitro gene mutation study in bacteria
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR Toolbox version 3.4 and the supporting QMRF report has been attached
Qualifier:
according to guideline
Guideline:
other: As mention below
Principles of method if other than guideline:
Prediction is done using OECD QSAR Toolbox version 3.4, 2017
GLP compliance:
not specified
Type of assay:
bacterial reverse mutation assay
Specific details on test material used for the study:
- Name of the test material (IUPAC Name): Disodium [5-chloro-3-[[4,5-dihydro-3-methyl-5-oxo-1-(3-sulphophenyl)-1H-pyrazol-4-yl]azo]-2-hydroxybenzene-1-sulphonato(4-)]hydroxychromate(2-)
- Common Name: Acid Red 183
- Molecular formula: C16H13ClCrN4O9S2
- Molecular weight: 599.835 g/mol
- Smiles notation: N1(c2cc(ccc2)S(=O)(=O)[O-])C([C@@-](\N=N\c2c(c(cc(c2)Cl)S(=O)(=O)[O-])[O-])C(=N1)C)=O.[Cr].[Na+].[Na+].[OH-]
- InChl: 1S/C16H12ClN4O8S2.Cr.2Na.H2O/c1-8-14(19-18-12-5-9(17)6-13(15(12)22)31(27,28)29)16(23)21(20-8)10-3-2-4-11(7-10)30(24,25)26;;;;/h2-7,22H,1H3,(H,24,25,26)(H,27,28,29);;;;1H2/q-1;;2*+1;/p-4/b19-18+;;;;
- Substance type: Organic
- Physical state: Solid
Target gene:
Histidine
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
Details on mammalian cell type (if applicable):
Not applicable
Additional strain / cell type characteristics:
not specified
Cytokinesis block (if used):
not specified
Metabolic activation:
with
Metabolic activation system:
S9 metabolic activation
Test concentrations with justification for top dose:
not specified
Vehicle / solvent:
not specified
Untreated negative controls:
not specified
Negative solvent / vehicle controls:
not specified
True negative controls:
not specified
Positive controls:
not specified
Details on test system and experimental conditions:
not specified
Rationale for test conditions:
not specified
Evaluation criteria:
Prediction is done considering a dose dependent increase in the number of revrtants/plate
Statistics:
not specified
Species / strain:
S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
Metabolic activation:
with
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Additional information on results:
not specified
Remarks on result:
other: No mutagenic effect were observed

The prediction was based on dataset comprised from the following descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 5 nearest neighbours
Domain  logical expression:Result: In Domain

(((((((("a" or "b" or "c" or "d" or "e" or "f" )  and ("g" and ( not "h") )  )  and ("i" and ( not "j") )  )  and ("k" and ( not "l") )  )  and "m" )  and "n" )  and ("o" and ( not "p") )  )  and ("q" and "r" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Phenols (Acute toxicity) by US-EPA New Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as SN1 AND SN1 >> Nitrenium Ion formation AND SN1 >> Nitrenium Ion formation >> Unsaturated heterocyclic azo by DNA binding by OECD

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as AN2 AND AN2 >> Michael addition to activated double bonds in heterocyclic ring systems AND AN2 >> Michael addition to activated double bonds in heterocyclic ring systems >> Pyrazolone and Pyrazolidine Derivatives AND AN2 >> Schiff base formation with carbonyl compounds (AN2) AND AN2 >> Schiff base formation with carbonyl compounds (AN2) >> Pyrazolone and Pyrazolidine Derivatives AND Schiff base formation AND Schiff base formation >> Schiff base on pyrazolones and pyrazolidinones AND Schiff base formation >> Schiff base on pyrazolones and pyrazolidinones >> Pyrazolones and Pyrazolidinones by Protein binding by OASIS v1.4

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as Acylation AND Acylation >> Direct Acylation Involving a Leaving group AND Acylation >> Direct Acylation Involving a Leaving group >> Acetates AND SN2 AND SN2 >> SN2 reaction at sp3 carbon atom AND SN2 >> SN2 reaction at sp3 carbon atom >> Alkyl diazo by Protein binding by OECD

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as Acid moiety AND Amides AND Hydrazines AND Phenol Amines AND Phenols by Aquatic toxicity classification by ECOSAR

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as Acid moiety AND Amides AND Hydrazines AND Phenol Amines AND Phenols by Aquatic toxicity classification by ECOSAR

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OASIS v.1.4

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as AN2 OR AN2 >>  Michael-type addition, quinoid structures OR AN2 >>  Michael-type addition, quinoid structures >> Flavonoids OR AN2 >>  Michael-type addition, quinoid structures >> Quinoneimines OR AN2 >>  Michael-type addition, quinoid structures >> Quinones and Trihydroxybenzenes OR AN2 >> Carbamoylation after isocyanate formation OR AN2 >> Carbamoylation after isocyanate formation >> Hydroxamic Acids OR AN2 >> Carbamoylation after isocyanate formation >> N-Hydroxylamines OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds >> Four- and Five-Membered Lactones OR AN2 >> Nucleophilic addition reaction with cycloisomerization OR AN2 >> Nucleophilic addition reaction with cycloisomerization >> Hydrazine Derivatives OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation after aldehyde release OR AN2 >> Shiff base formation after aldehyde release >> Specific Acetate Esters OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Non-covalent interaction >> DNA intercalation >> Amino Anthraquinones OR Non-covalent interaction >> DNA intercalation >> Aminoacridine DNA Intercalators OR Non-covalent interaction >> DNA intercalation >> Coumarins OR Non-covalent interaction >> DNA intercalation >> DNA Intercalators with Carboxamide and Aminoalkylamine Side Chain OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Nitroaromatics OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Primary Aromatic Amines OR Non-covalent interaction >> DNA intercalation >> Quinones and Trihydroxybenzenes OR Radical OR Radical >> Generation of ROS by glutathione depletion (indirect) OR Radical >> Generation of ROS by glutathione depletion (indirect) >> Haloalkanes Containing Heteroatom OR Radical >> Radical mechanism by ROS formation OR Radical >> Radical mechanism by ROS formation >> Five-Membered Aromatic Nitroheterocycles OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Amino Anthraquinones OR Radical >> Radical mechanism via ROS formation (indirect) >> Anthrones OR Radical >> Radical mechanism via ROS formation (indirect) >> C-Nitroso Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Conjugated Nitro Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Coumarins OR Radical >> Radical mechanism via ROS formation (indirect) >> Flavonoids OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Nitroaromatics OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Hydrazine Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> N-Hydroxylamines OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitro Azoarenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroaniline Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroarenes with Other Active Groups OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR Radical >> Radical mechanism via ROS formation (indirect) >> Polynitroarenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Quinones and Trihydroxybenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Thiols OR Radical >> ROS formation after GSH depletion (indirect) OR Radical >> ROS formation after GSH depletion (indirect) >> Haloalcohols OR Radical >> ROS formation after GSH depletion (indirect) >> Quinoneimines OR SN1 OR SN1 >> Nucleophilic attack after carbenium ion formation OR SN1 >> Nucleophilic attack after carbenium ion formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after carbenium ion formation >> Specific Acetate Esters OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Amino Anthraquinones OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Fused-Ring Primary Aromatic Amines OR SN1 >> Nucleophilic attack after nitrenium ion formation OR SN1 >> Nucleophilic attack after nitrenium ion formation >> N-Hydroxylamines OR SN1 >> Nucleophilic attack after nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines OR SN1 >> Nucleophilic attack after nitrosonium cation formation OR SN1 >> Nucleophilic attack after nitrosonium cation formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Conjugated Nitro Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Fused-Ring Nitroaromatics OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitro Azoarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroaniline Derivatives OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Polynitroarenes OR SN1 >> Nucleophilic substitution after glutathione-induced nitrenium ion formation OR SN1 >> Nucleophilic substitution after glutathione-induced nitrenium ion formation >> C-Nitroso Compounds OR SN2 OR SN2 >> Acylation OR SN2 >> Acylation >> Hydroxamic Acids OR SN2 >> Acylation >> N-Hydroxylamines OR SN2 >> Acylation >> Specific Acetate Esters OR SN2 >> Acylation involving a leaving group after metabolic activation OR SN2 >> Acylation involving a leaving group after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2 >> Alkylation by epoxide metabolically formed after E2 reaction OR SN2 >> Alkylation by epoxide metabolically formed after E2 reaction >> Haloalcohols OR SN2 >> Alkylation, direct acting epoxides and related OR SN2 >> Alkylation, direct acting epoxides and related >> Epoxides and Aziridines OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Sulfonates and Sulfates OR SN2 >> Alkylation, ring opening SN2 reaction OR SN2 >> Alkylation, ring opening SN2 reaction >> Four- and Five-Membered Lactones OR SN2 >> Direct acting epoxides formed after metabolic activation OR SN2 >> Direct acting epoxides formed after metabolic activation >> Coumarins OR SN2 >> Direct acting epoxides formed after metabolic activation >> Quinoline Derivatives OR SN2 >> Direct nucleophilic attack on diazonium cation OR SN2 >> Direct nucleophilic attack on diazonium cation >> Hydrazine Derivatives OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Specific Acetate Esters OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation >> Geminal Polyhaloalkane Derivatives OR SN2 >> SN2 at an activated carbon atom OR SN2 >> SN2 at an activated carbon atom >> Quinoline Derivatives OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 >> Nitroarenes with Other Active Groups by DNA binding by OASIS v.1.4

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as Non binder, MW>500 by Estrogen Receptor Binding

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as Moderate binder, OH grooup OR Non binder, impaired OH or NH2 group OR Non binder, non cyclic structure OR Non binder, without OH or NH2 group OR Strong binder, NH2 group OR Strong binder, OH group OR Very strong binder, OH group OR Weak binder, OH group by Estrogen Receptor Binding

Domain logical expression index: "k"

Referential boundary: The target chemical should be classified as Group 14 - Carbon C AND Group 15 - Nitrogen N AND Group 16 - Oxygen O AND Group 16 - Sulfur S AND Group 17 - Halogens Cl AND Group 17 - Halogens F,Cl,Br,I,At AND Group 6 - Trans.Metals Cr,Mo,W by Chemical elements

Domain logical expression index: "l"

Referential boundary: The target chemical should be classified as Group 13 - Metals Al,Ga,In,Tl by Chemical elements

Domain logical expression index: "m"

Similarity boundary:Target: CC1C2C(N(c3cccc(S(O)(=O)=O)c3)N=1)=O[Cr]1(O)N2=Nc2cc(Cl)cc(S(O)(=O)=O)c2O1
Threshold=50%,
Dice(Atom centered fragments)
Atom type; Count H attached; Hybridization

Domain logical expression index: "n"

Similarity boundary:Target: CC1C2C(N(c3cccc(S(O)(=O)=O)c3)N=1)=O[Cr]1(O)N2=Nc2cc(Cl)cc(S(O)(=O)=O)c2O1
Threshold=10%,
Dice(Atom centered fragments)
Atom type; Count H attached; Hybridization

Domain logical expression index: "o"

Referential boundary: The target chemical should be classified as Not classified by Oncologic Primary Classification

Domain logical expression index: "p"

Referential boundary: The target chemical should be classified as Arylazo Type Compounds OR Halogenated Aromatic Hydrocarbon Type Compounds by Oncologic Primary Classification

Domain logical expression index: "q"

Parametric boundary:The target chemical should have a value of log Kow which is >= -7.19

Domain logical expression index: "r"

Parametric boundary:The target chemical should have a value of log Kow which is <= 0.207

Conclusions:
2-[(4-amino-3-methoxyphenyl)sulphonyl]ethyl hydrogen sulphate (26672-22-0) was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Executive summary:

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Disodium [5-chloro-3-[[4,5-dihydro-3-methyl-5-oxo-1-(3-sulphophenyl)-1H-pyrazol-4-yl]azo]-2-hydroxybenzene-1-sulphonato(4-)]hydroxychromate(2-); Acid Red 183 (6408-31-7). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. Disodium [5-chloro-3-[[4,5-dihydro-3-methyl-5-oxo-1-(3-sulphophenyl)-1H-pyrazol-4-yl]azo]-2-hydroxybenzene-1-sulphonato(4-)]hydroxychromate(2-); was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro. Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

Prediction model based estimation and data from read across chemical have been reviewed to determine the mutagenic nature of Disodium [5-chloro-3-[[4,5-dihydro-3-methyl-5-oxo-1-(3-sulphophenyl)-1H-pyrazol-4-yl]azo]-2-hydroxybenzene-1-sulphonato(4-)]hydroxychromate(2-); Other name Acid Red 183 (6408-31-7). The studies are as mentioned below

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Disodium [5-chloro-3-[[4,5-dihydro-3-methyl-5-oxo-1-(3-sulphophenyl)-1H-pyrazol-4-yl]azo]-2-hydroxybenzene-1-sulphonato(4-)]hydroxychromate(2-); Acid Red 183 (6408-31-7). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. Disodium [5-chloro-3-[[4,5-dihydro-3-methyl-5-oxo-1-(3-sulphophenyl)-1H-pyrazol-4-yl]azo]-2-hydroxybenzene-1-sulphonato(4-)]hydroxychromate(2-); was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro. Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, chromosomal aberration was predicted for Disodium [5-chloro-3-[[4,5-dihydro-3-methyl-5-oxo-1-(3-sulphophenyl)-1H-pyrazol-4-yl]azo]-2-hydroxybenzene-1-sulphonato(4-)]hydroxychromate(2-); Acid Red 183 (6408-31-7) .The study assumed the use of Chinese hamster ovary (CHO) cell line with and without S9 metabolic activation system Disodium [5-chloro-3-[[4,5-dihydro-3-methyl-5-oxo-1-(3-sulphophenyl)-1H-pyrazol-4-yl]azo]-2-hydroxybenzene-1-sulphonato(4-)]hydroxychromate(2-)was predicted to not induce chromosomal aberrations in Chinese hamster ovary (CHO) cell line in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro. Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

In a study for structurally and functionally similar read across chemical, Gene mutation toxicity study was performed by National Institute of Technology and Evaluation (Japan chemicals collaborative knowledge database, 2017) to determine the mutagenic nature of 4,4'-Isopropylylidenebis(2,6-dibromophenol (79-94-7). The read across substances share high similarity in structure and log kow .Therefore, it is acceptable to derive information on mutation from the analogue substance. Genetic toxicity in vitro study was assessed for 4,4'-Isopropylylidenebis(2,6-dibromophenol. For this purpose AMES test was performed according to Guidelines for Screening Mutagenicity Testing of Chemicals (Japan) and OECD Test

Guideline 471.The test material was exposed to Salmonella typhimurium TA100, TA1535, TA98, TA1537, Escherichia coli WP2 uvrA in the presence and absence of metabolic activation S9. The concentration of test material used in the presence and absence of metabolic activation were as fallow

-S9 mix; 0, 78.1, 156, 313, 625, 1250, 2500 µg/plate(TA100)

-S9 mix; 0, 19.5, 39.1, 78.1, 156, 313, 625 µg /plate(TA1535)

-S9 mix; 0, 156, 313, 625, 1250, 2500, 5000 µg /plate (WP2 uvrA, TA98)

-S9 mix; 0, 4.88, 9.77, 19.5, 39.1, 78.1, 156 µg /plate(TA1537)

+S9 mix; 0, 156, 313, 625, 1250, 2500, 5000 µg /plate(TA100, TA98,

TA1535, WP2 uvrA)

+S9 mix; 0, 9.77, 19.5, 39.1, 78.1, 156, 313 µg /plate(TA1537)

No mutagenic effects were observed in all strains, in the presence and absence of metabolic activation. Therefore 4,4'-Isopropylylidenebis(2,6-dibromophenol was considered to be non mutagenic in Salmonella typhimurium TA100, TA1535, TA98, TA1537, Escherichia coli WP2 uvrA by AMES test. Hence the substance cannot be classified as gene mutant in vitro.

In a study for structurally and functionally similar read across chemical, Gene mutation toxicity study was performed by Aparajita Das et al.( Int J Hum Genet, 2004) to determine the mutagenic nature of Tartrazine (1934-21-0); IUPAC name: Trisodium 5-hydroxy-1-(4-sulphophenyl)-4-(4-sulphophenylazo) pyrazole-3-carboxylate. The read across substances share high similarity in structure and log kow .Therefore, it is acceptable to derive information on mutation from the analogue substance. Ames mutagenicity assay was performed to evaluate the mutagenic nature of the test compound tartrazine using the plate incorporation assay. Tartrazine was dissolved in sterile double distilled water and was tested at a concentration of 0, 100, 250, 500 and 1000 μg /plate. The plates were inverted within an hour and placed in a dark vented incubator at 37⁰C for 48 hours. Positive controls (for TA97a and TA98, 20 μg/plate nitro phenylene diamine and for TA100, 1.5 μg/plate sodium azide) and negative controls were maintained concurrently for all the experiments. Three plates were used for each set. After 48 hours of incubation, the revertants colonies were counted. Tartrazine did not induce gene mutation in Salmonella typhimurium strains TA97a, TA98 and TA100 and hence it is not likely to classify as a gene mutant in vitro.

Based on the data available for the target chemical and its read across substance and applying weight of evidence Disodium [5-chloro-3-[[4,5-dihydro-3-methyl-5-oxo-1-(3-sulphophenyl)-1H-pyrazol-4-yl]azo]-2-hydroxybenzene-1-sulphonato(4-)]hydroxychromate(2-); Other name Acid Red 183 (6408-31-7)does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro.

Justification for classification or non-classification

Thus based on the above annotation and CLP criteria for the target chemical Disodium [5-chloro-3-[[4,5-dihydro-3-methyl-5-oxo-1-(3-sulphophenyl)- 1H-pyrazol-4-yl]azo]- 2-hydroxybenzene -1-sulphonato(4-)]hydroxychromate(2-); Other name Acid Red 183 (6408-31-7)does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro.