Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 4-Hydroxypiperidine; Piperidin-4-ol ( 5382-16-1). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. 4-Hydroxypiperidine; Piperidin-4-ol was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro. Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Link to relevant study records
Reference
Endpoint:
in vitro gene mutation study in bacteria
Remarks:
T
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR Toolbox version 3.3 and the supporting QMRF report has been attached.
Qualifier:
according to guideline
Guideline:
other: As mention below
Principles of method if other than guideline:
Prediction is done using OECD QSAR Toolbox version 3.3, 2017
GLP compliance:
not specified
Type of assay:
bacterial reverse mutation assay
Specific details on test material used for the study:
- Name of test material: 4-Hydroxypiperidine
- Molecular formula: C5H11NO
- Molecular weight: 101.148 g/mol
- Smiles notation: N1CCC(CC1)O
- InChl: 1S/C5H11NO/c7-5-1-3-6-4-2-5/h5-7H,1-4H2
- Substance type: Organic
- Physical state: Solid
Target gene:
Histidine
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
Details on mammalian cell type (if applicable):
Not applicable.
Additional strain / cell type characteristics:
not specified
Cytokinesis block (if used):
not specified
Metabolic activation:
with
Metabolic activation system:
S9 metabolic activation
Test concentrations with justification for top dose:
not specified
Vehicle / solvent:
not specified
Untreated negative controls:
not specified
Negative solvent / vehicle controls:
not specified
True negative controls:
not specified
Positive controls:
not specified
Details on test system and experimental conditions:
not specified
Rationale for test conditions:
not specified
Evaluation criteria:
Prediction was done considering a dose dependent increase in the number of revertants/plate.
Statistics:
not specified
Species / strain:
S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
Metabolic activation:
with
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Additional information on results:
not specified
Remarks on result:
other: No mutagenic effect were observed.

The prediction was based on dataset comprised from the following descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 8 nearest neighbours
Domain  logical expression:Result: In Domain

((((((("a" or "b" or "c" or "d" )  and "e" )  and ("f" and ( not "g") )  )  and ("h" and ( not "i") )  )  and "j" )  and "k" )  and ("l" and "m" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Secondary amines by OECD HPV Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Aliphatic Amines by US-EPA New Chemical Categories

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as Narcotic Amine by Acute aquatic toxicity MOA by OASIS

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as Aliphatic Amines by Aquatic toxicity classification by ECOSAR

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OASIS v.1.3 ONLY

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OECD

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates >> Benzylamines-Acylation OR Michael addition OR Michael addition >> P450 Mediated Activation of Heterocyclic Ring Systems OR Michael addition >> P450 Mediated Activation of Heterocyclic Ring Systems >> Furans OR Michael addition >> P450 Mediated Activation of Heterocyclic Ring Systems >> Thiophenes-Michael addition OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> 5-alkoxyindoles OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Alkyl phenols OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Arenes OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Hydroquinones OR Michael addition >> Polarised Alkenes-Michael addition OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated esters OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated ketones OR Michael addition >> Quinones and Quinone-type Chemicals OR Michael addition >> Quinones and Quinone-type Chemicals >> Quinones OR Schiff base formers OR Schiff base formers >> Chemicals Activated by P450 to Glyoxal  OR Schiff base formers >> Chemicals Activated by P450 to Glyoxal  >> Ethanolamines (including morpholine) OR Schiff base formers >> Chemicals Activated by P450 to Glyoxal  >> Ethylenediamines (including piperazine) OR Schiff base formers >> Chemicals Activated by P450 to Mono-aldehydes OR Schiff base formers >> Chemicals Activated by P450 to Mono-aldehydes >> Benzylamines-Schiff base OR Schiff base formers >> Chemicals Activated by P450 to Mono-aldehydes >> Thiazoles OR Schiff base formers >> Direct Acting Schiff Base Formers OR Schiff base formers >> Direct Acting Schiff Base Formers >> Mono aldehydes OR SN1 OR SN1 >> Carbenium Ion Formation OR SN1 >> Carbenium Ion Formation >> Allyl benzenes OR SN1 >> Iminium Ion Formation OR SN1 >> Iminium Ion Formation >> Aliphatic tertiary amines OR SN1 >> Nitrenium Ion formation OR SN1 >> Nitrenium Ion formation >> Aromatic azo OR SN1 >> Nitrenium Ion formation >> Aromatic nitro OR SN1 >> Nitrenium Ion formation >> Aromatic phenylureas OR SN1 >> Nitrenium Ion formation >> Primary (unsaturated) heterocyclic amine OR SN1 >> Nitrenium Ion formation >> Primary aromatic amine OR SN1 >> Nitrenium Ion formation >> Secondary aromatic amine OR SN1 >> Nitrenium Ion formation >> Tertiary (unsaturated) heterocyclic amine  OR SN1 >> Nitrenium Ion formation >> Tertiary aromatic amine OR SN2 OR SN2 >> Episulfonium Ion Formation OR SN2 >> Episulfonium Ion Formation >> Mustards OR SN2 >> Epoxidation of Aliphatic Alkenes OR SN2 >> Epoxidation of Aliphatic Alkenes >> Halogenated polarised alkenes OR SN2 >> P450 Mediated Epoxidation OR SN2 >> P450 Mediated Epoxidation >> Thiophenes-SN2 OR SN2 >> SN2 at an sp3 Carbon atom OR SN2 >> SN2 at an sp3 Carbon atom >> Aliphatic halides by DNA binding by OECD

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as Non binder, impaired OH or NH2 group by Estrogen Receptor Binding

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as Moderate binder, NH2 group OR Non binder, MW>500 OR Non binder, non cyclic structure OR Non binder, without OH or NH2 group OR Strong binder, NH2 group OR Strong binder, OH group OR Weak binder, NH2 group OR Weak binder, OH group by Estrogen Receptor Binding

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as High (Class III) by Toxic hazard classification by Cramer (original) ONLY

Domain logical expression index: "k"

Referential boundary: The target chemical should be classified as Bioavailable by Lipinski Rule Oasis ONLY

Domain logical expression index: "l"

Parametric boundary:The target chemical should have a value of log Kow which is >= -2.87

Domain logical expression index: "m"

Parametric boundary:The target chemical should have a value of log Kow which is <= 1.3

Conclusions:
4-Hydroxypiperidine; Piperidin-4-ol ( 5382-16-1) was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Executive summary:

Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 4-Hydroxypiperidine; Piperidin-4-ol ( 5382-16-1). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. 4-Hydroxypiperidine; Piperidin-4-ol was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro. Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

Prediction model based estimation and data from read across chemical have been reviewed to determine the mutagenic nature of4-Hydroxypiperidine; Piperidin-4-ol (5382-16-1). The studies are as mentioned below

Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 4-Hydroxypiperidine; Piperidin-4-ol ( 5382-16-1). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. 4-Hydroxypiperidine; Piperidin-4-ol was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro. Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

In a study for structurally and functionally similar read across chemical, Gene mutation toxicity study was performed by Errol Zeigeret.al. (Environmental Mutagenesis, 1987) to determine the mutagenic nature of 1,8-P-Menthanediaminc (80-52-4). The read across substances share high similarity in structure and log kow .Therefore, it is acceptable to derive information on mutation from the analogue substance. Genetic toxicity study for 1,8-P-Menthanediaminc was assessed for its mutagenic potential .For this purpose Bacterial reverse mutation assay was performed on Salmonella typhimurium TA98, TA100, TA1535, and TA1537.The test material was esposed at the concentration of 0,33-1000µg/plate in the absence of S9 while10-1000 µg/plate in the presence of S9.No mutagenic effect were observed. Therefore 1,8-P-Menthanediaminc was considered to be non mutagenic in Salmonella typhimurium TA98, TA100, TA1535, and TA1537 in the presence and absence of S9. Hence the substance cannot classify as gene mutant in vitro.

In a study for structurally and functionally similar read across chemical, Gene mutation toxicity study was performed by National Institute of Technology and Evaluation (Japan chemicals collaborative knowledge database , 2017)to determine the mutagenic nature of 2,2,6,6-Tetramethyl-4-piperidinol(2403-88-5 ). The read across substances share high similarity in structure and log kow .Therefore, it is acceptable to derive information on mutation from the analogue substance. Genetic toxicity study for 2,2,6,6-Tetramethyl-4-piperidinol was assessssed for its mutagenic potential .For this purpose Bacterial reverse mutation assay was performed according to Guidelines for Screening Mutagenicity Testing of Chemicals (Japan) and OECD Guidelines No. 471 and 472. The test material were exposed at the concentration of 0,156, 313, 625, 1250, 2500 and 5000 µg/plate to Salmonella typhimurium TA100, TA1535, TA98, TA1537 and Escherichia coli WP2 uvrA in the presence and absence of S9. No mutagenic effect were observed. Therefore 2,2,6,6-Tetramethyl-4-piperidinol(2403-88-5 )was considered to be non mutagenic in Salmonella typhimurium TA100, TA1535, TA98, TA1537 and Escherichia coli WP2 uvrA. The test result were considered to be negative with and without S9. Hence the substance cannot classify as gene mutant in vitro.

Based on the data available for the target chemical and its read across substance and applying weight of evidence 4-Hydroxypiperidine; Piperidin-4-ol ( 5382-16-1) does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro.

 

Justification for classification or non-classification

Thus based on the above annotation and CLP criteria for the target chemical .4-Hydroxypiperidine; Piperidin-4-ol ( 5382-16-1) does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro.