Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Physical & Chemical properties

Vapour pressure

Currently viewing:

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
vapour pressure
Type of information:
experimental study
Adequacy of study:
key study
Study period:
This study was conducted between 02 June 2017 and 08 June 2017
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: Information is derived from a reliable GLP study using the balance method according to OECD TG 104.
Qualifier:
according to guideline
Guideline:
OECD Guideline 104 (Vapour Pressure Curve)
Version / remarks:
23 March 2006
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method A.4 (Vapour Pressure)
Version / remarks:
EC No. 440/2008 of 30 May 2008
Deviations:
no
GLP compliance:
yes (incl. QA statement)
Type of method:
effusion method: vapour pressure balance
Specific details on test material used for the study:
Information as provided by the Sponsor.
Identification: 4,4'-(1,3-Phenylenediisopropylidene) diphenylcyanate
CAS No.: 127667-44-1
Envigo Appearance/Physical state: Yellow viscous liquid
Sponsor Appearance/Physical state: Highly viscous yellowish liquid
Batch: FAR366085A
Purity: Not indicated by the Sponsor
Expiry date: 29 September 2019
Envigo Storage conditions: Approximately 4 °C in the dark
Sponsor Storage conditions In a refrigerator at 2 to 8 °C
Stability in Solvent: Not indicated by the Sponsor
Purpose of Use: Industrial chemical
Safety Precautions: Routine hygienic procedures will be sufficient to ensure personnel health and safety. Additional measures were provided according to the safety data sheet
Key result
Temp.:
25 °C
Vapour pressure:
< 0 Pa
Transition / decomposition:
no

Recorded temperatures, mass differences and the resulting calculated values of vapor pressure are shown in the following tables:

Run 2

Table1– Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

100

373.15

0.002679887

21.94

2.194E-08

0.030458341

-1.516293755

101

374.15

0.002672725

23.04

2.304E-08

0.031985423

-1.495047904

102

375.15

0.002665600

24.00

2.400E-08

0.033318149

-1.477319137

103

376.15

0.002658514

25.69

2.569E-08

0.035664302

-1.447766274

104

377.15

0.002651465

26.32

2.632E-08

0.036538903

-1.437244494

105

378.15

0.002644453

28.98

2.898E-08

0.040231665

-1.395431998

106

379.15

0.002637479

45.92

4.592E-08

0.063748725

-1.195528499

107

380.15

0.002630541

30.42

3.042E-08

0.042230754

-1.374371169

108

381.15

0.002623639

33.55

3.355E-08

0.046575995

-1.331837854

109

382.15

0.002616774

35.02

3.502E-08

0.048616732

-1.313214237

110

383.15

0.002609944

37.44

3.744E-08

0.051976312

-1.284194539

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 2 gives the following statistical data using an unweighted least squares treatment.

Slope:

-3.53 x 103

Standard error in slope:

808

 

Intercept:

7.95

Standard error in intercept:

2.14

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -3.53 x 103/temp(K) + 7.95

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -3.89.

Run 3

Table2– Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

100

373.15

0.002679887

17.16

1.716E-08

0.023822476

-1.623013095

101

374.15

0.002672725

18.93

1.893E-08

0.026279690

-1.580379765

102

375.15

0.002665600

19.57

1.957E-08

0.027168174

-1.565939553

103

376.15

0.002658514

19.42

1.942E-08

0.026959935

-1.569281153

104

377.15

0.002651465

20.12

2.012E-08

0.027931715

-1.553902402

105

378.15

0.002644453

22.32

2.232E-08

0.030985878

-1.508836188

106

379.15

0.002637479

23.05

2.305E-08

0.031999305

-1.494859449

107

380.15

0.002630541

28.00

2.800E-08

0.038871174

-1.410372347

108

381.15

0.002623639

25.62

2.562E-08

0.035567124

-1.448951253

109

382.15

0.002616774

28.13

2.813E-08

0.039051647

-1.408360647

110

383.15

0.002609944

30.06

3.006E-08

0.041730981

-1.379541402

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 3 gives the following statistical data using an unweighted least squares treatment.

Slope:

-3.42 x 103

Standard error in slope:

293

 

Intercept:

7.54

Standard error in intercept:

0.774

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -3.42 x 103/temp(K) + 7.54

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -3.93.

Run 4

Table3– Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

100

373.15

0.002679887

13.52

1.352E-08

0.018769224

-1.726553687

101

374.15

0.002672725

14.70

1.470E-08

0.020407366

-1.690213044

102

375.15

0.002665600

16.27

1.627E-08

0.022586928

-1.646142826

103

376.15

0.002658514

16.77

1.677E-08

0.023281056

-1.632997316

104

377.15

0.002651465

17.02

1.702E-08

0.023628120

-1.626570823

105

378.15

0.002644453

18.81

1.881E-08

0.026113099

-1.583141583

106

379.15

0.002637479

20.77

2.077E-08

0.028834081

-1.540093882

107

380.15

0.002630541

20.47

2.047E-08

0.028417604

-1.546412536

108

381.15

0.002623639

22.18

2.218E-08

0.030791522

-1.511568837

109

382.15

0.002616774

22.97

2.297E-08

0.031888245

-1.496369384

110

383.15

0.002609944

25.37

2.537E-08

0.035220060

-1.453209912

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 4 gives the following statistical data using an unweighted least squares treatment.

Slope:

-3.65 x 103

Standard error in slope:

169

 

Intercept:

8.06

Standard error in intercept:

0.448

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -3.65 x 103/temp(K) + 8.06

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -4.17.

Run 5

Table4– Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

100

373.15

0.002679887

11.29

1.129E-08

0.015673412

-1.804836437

101

374.15

0.002672725

12.95

1.295E-08

0.017977918

-1.745260610

102

375.15

0.002665600

15.01

1.501E-08

0.020837726

-1.681149686

103

376.15

0.002658514

16.19

1.619E-08

0.022475868

-1.648283530

104

377.15

0.002651465

14.91

1.491E-08

0.020698900

-1.684052735

105

378.15

0.002644453

17.13

1.713E-08

0.023780829

-1.623773016

106

379.15

0.002637479

16.85

1.685E-08

0.023392117

-1.630930474

107

380.15

0.002630541

18.12

1.812E-08

0.025155202

-1.599372185

108

381.15

0.002623639

19.93

1.993E-08

0.027667946

-1.558023080

109

382.15

0.002616774

20.93

2.093E-08

0.029056202

-1.536761150

110

383.15

0.002609944

21.05

2.105E-08

0.029222793

-1.534278279

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 5 gives the following statistical data using an unweighted least squares treatment.

Slope:

-3.52 x 103

Standard error in slope:

345

 

Intercept:

7.67

Standard error in intercept:

0.912

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -3.52 x 103/temp(K) + 7.67

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -4.14

.

Run 6

Table5– Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

100

373.15

0.002679887

8.69

8.690E-09

0.012063946

-1.918510602

101

374.15

0.002672725

12.14

1.214E-08

0.016853430

-1.773311692

102

375.15

0.002665600

16.70

1.670E-08

0.023183879

-1.634813908

103

376.15

0.002658514

11.81

1.181E-08

0.016395306

-1.785280481

104

377.15

0.002651465

12.72

1.272E-08

0.017658619

-1.753043267

105

378.15

0.002644453

12.02

1.202E-08

0.016686840

-1.777625911

106

379.15

0.002637479

13.53

1.353E-08

0.018783106

-1.726232582

107

380.15

0.002630541

13.14

1.314E-08

0.018241686

-1.738935014

108

381.15

0.002623639

13.88

1.388E-08

0.019268996

-1.715140913

109

382.15

0.002616774

15.58

1.558E-08

0.021629032

-1.664962925

110

383.15

0.002609944

15.39

1.539E-08

0.021365263

-1.670291759

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 6 gives the following statistical data using an unweighted least squares treatment.

Slope:

-2.02 x 103

Standard error in slope:

874

 

Intercept:

3.60

Standard error in intercept:

2.31

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -2.02 x 103/temp(K) + 3.60

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -3.18.

Summary of Results

The values of vapor pressure at 25 °C extrapolated from each graph are summarized in the following table:

Table6            Summary of Vapor Pressure Data

Run

Log10[Vp(25 ºC)]

2

-3.89

3

-3.93

4

-4.17

5

-4.14

6

-3.18

Mean

-3.86

Vapor Pressure

1.37 x 10-4Pa

The test item did not change in appearance under the conditions used in the determination.

Conclusions:
The vapor pressure of the test item has been determined to be 1.4 x 10-4 Pa at 25 ºC.
Executive summary:

The vapor pressure of 4,4'-(1,3-Phenylenediisopropylidene) diphenylcyanate has been determinedto be 1.4 x 10-4Pa at 25 °C, using the vapor pressure balance method,designed to be compatible with Method A.4 Vapour Pressure of Commission Regulation (EC) No 440/2008 of 30 May 2008 and Method 104 of the OECD Guidelines for Testing of Chemicals, 23 March 2006

Description of key information

Density. 1.11 x 103 kg/m3 at 20.0 ± 0.5 °C, relative density: 1.11, using the pycnometer method, designed to be compatible with Method A.3 Relative Density of Commission Regulation (EC) No 440/2008 of 30 May 2008 and Method 109 of the OECD Guidelines for Testing of Chemicals, 02 October 2012.

Key value for chemical safety assessment

Vapour pressure:
0.001 Pa
at the temperature of:
25 °C

Additional information