Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 232-379-5 | CAS number: 8011-76-5 Substance obtained by treating phosphate rock with sulfuric acid or a mixture of sulfuric and phosphoric acids. Composed primarily of calcium phosphates and calcium sulfate.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
As inorganic compounds, traditional degradation studies are not applicable to ammonium dihydrogenorthophosphate (MAP), diammonium hydrogenorthophosphate (DAP), single superphosphate (SSP) and triple superphosphate (TSP). The degradation pathway is through simple dissociation into phosphates (and sulfates for SSP and TSP) and the corresponding cations (NH4+, Ca2+). In soil and water, nitrification and de-nitrification processes occur as well as in many secondary sewage treatment processes.Due to the water solubility and the ionic nature, the substance is not expected to adsorb or bioaccumulate, water is the main target compartment, and the substance will not volatilize from soil.
Additional information
Phosphates
An additional environmental issue concerning phosphates in general, and therefore also for the abovementioned substances, is their role in the nutrient enrichment of surface waters (eutrophication). MAP, DAP, SSP and STP is hydrolysed in the sewerage pipes, the sewage treatment plants and the environment to soluble inorganic phosphates or transformed to insoluble inorganic forms. These are the same phosphates as those formed by natural hydrolysis of human urine and faeces, animal wastes, food and organic wastes, mineral fertilisers, bacterial recycling of organic materials in ecosystems, etc. These phosphate forms are bio-assimilated by the bacterial populations and the aquatic plants and algae found
in these different compartments. Phosphates are an essential nutrient (food element) for plants, and stimulate the growth of water plants
(macrophytes) and/or algae (phytoplankton) if they represent the growth-limiting factor. Although in some cases nutrient enrichment will be absorbed and might not have an apparent effect, in other circumstances, it can lead to negative effects. These can range from ecosystem modifications, through algal blooms, to in extreme cases (through decomposition of plant biomass) oxygen depletion and collapse of the biocenosis in a surface water.
As eutrophication is a common effect due to an excess of phosphates in the environment, the problem is covered in European Regulations. The Directive 2000/60/EC of the European parliament and of the council of 23 October 2000 establishing a framework for Community action in the field of water policy is an important European Regulation regulating the emission and concentration of phosphate substances in the environment.
De Madariaga BM (2007) developed a conceptual model and protocol for performing European quantitative eutrophication risk assessments of (poly)phosphates in detergents. In this model, the risk probability for eutrophication occurring in the most sensitive areas of a river basin (lakes, reservoirs, meadow zones, estuaries), is based on the TP (total phosphorous) concentration of the inflow water. The variability observed for similar TP concentrations is the consequence of variations in concentrations of N and/or other nutrients, other ecosystem factors and other natural variability. The study also covered the implementation of the model and a set of examples based on generic European scenarios as well as a pan European probabilistic estimation covering the diversity observed for the European conditions and enabled a probabilistic risk assessment of eutrophication relating to the use of STTP in detergents. The scientific validity of this methodology was confirmed by the EU scientific committee SCHER (Opinion of 29th November 2007).
Calcium sulfate
Calcium and sulfate ions are ubiquitous in the environment. Calcium is an important constituent of soil, water and sediment and the minerals found in these compartments are mostly compounds of calcium with other substances. Furthermore, calcium sulfate is known to improve soil quality.
Calcium sulfate is an inorganic substance which does not undergo biodegradation, i.e. microbial degradation to carbon dioxide and water, since it does not contain any carbon or hydrogen atoms. Therefore, the ions will dissociate, calcium will be assimilated by species residing in the soil, water or sediment and is necessary to maintain a good chemical balance in these compartments. The sulfate will become part of the sulfur cycle and/or be assimilated by microorganisms and other species that require sulfate as an essential substance in their biological systems/processes.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.