Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 232-379-5 | CAS number: 8011-76-5 Substance obtained by treating phosphate rock with sulfuric acid or a mixture of sulfuric and phosphoric acids. Composed primarily of calcium phosphates and calcium sulfate.
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
- Endpoint:
- basic toxicokinetics
- Type of information:
- other: expert statement
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Based on the current knowledge the statement has been written.
- Objective of study:
- absorption
- Principles of method if other than guideline:
- no guideline as it is an expert statement
- GLP compliance:
- no
- Radiolabelling:
- no
- Type:
- absorption
- Results:
- The oral absorption is considered to be 50%, the inhalation absorption 100% and the dermal absorption 10%.
- Details on absorption:
- Based on low MW, high water solubility, assumed low logPow high oral absorption is expected. Therefore, 50% absorption is taken for oral exposure and 10% for inhalation and dermal exposure.
Reference
In general, a compound needs to be dissolved before it can be taken up from the gastro-intestinal tract after oral administration.(1) Intestinal absorption of water-soluble constituents of SSP and TSP may appear likely.(2) However,Ca2+is an essential ion in all organisms, where it plays a crucial role in processes ranging from the formation and maintenance of the skeleton to the temporal and spatial regulation of neuronal function (3). The Ca2+balance is maintained by the concerted action of three organ systems, including the gastrointestinal tract, bone, and kidney. An adult ingests on averageCa2+daily from whichis absorbed in the small intestine by a mechanism that is controlled primarily by the calciotropic hormones. To maintain the Ca2+balance, the kidney must excrete the same amount of Ca2+that the small intestine absorbs. This is accomplished by a combination of filtration of Ca2+across the glomeruli and subsequent re-absorption of the filtered Ca2+along the renal tubules. Bone turnover is a continuous process involving both resorption of existing bone and deposition of new bone. The above-mentioned Ca2+fluxes are stimulated by the synergistic actions of active vitamin D (1,25-dihydroxyvitamin D3) and parathyroid hormone.
Phosphate (4) is a major intracellular anion which participates in providing energy for metabolism of substances and contributes to important metabolic and enzymatic reactions in almost all organs and tissues. Phosphate exerts a modifying influence on calcium concentrations, a buffering effect on acid-base equilibrium, and has a major role in the renal excretion of hydrogen ions. Phosphate is absorbed from, and to a limited extent secreted into, the gastrointestinal tract. Transport of phosphate from the gut lumen is an active, energy-dependent process that is modified by several factors. Vitamin D stimulates phosphate absorption, an effect reported to precede its action on calcium ion transport. In adults, about two thirds of the ingested phosphate is absorbed, and that which is absorbed is almost entirely excreted into the urine. In growing children, phosphate balance is positive. Concentrations of phosphate in plasma are higher in children than in adults.
Absorption of sulphate depends on the amount ingested. 30 - 44% of sulfate was excreted in the 24-h urine after oral administration of magnesium or sodium sulfate (5.4 g sulfate) in volunteers. At high sulphate doses that exceed intestinal absorption, sulphate is excreted in feces. Intestinal sulphate may bind water into the lumen and cause diarrhoea in high doses. Sulphate is a normal constituent of human blood and does not accumulate in tissues. Sulphate levels are regulated by the kidney through a reabsorption mechanism. Sulphate is usually eliminated by renal excretion. It has also an important role in the detoxification of various endogenous and exogenous compounds, as it may combine with these to form soluble sulphate esters that are excreted in the urine (5).
For risk assessment purposes oral absorption of SSP and TSP constituents is set at 50%. The results of the toxicity studies do not provide a reason to deviate from this proposed oral absorption.
Due to the low vapour pressure of SSP and TSP (<8.40x10-7)it is not to be expected that their constituents will reach the nasopharyncheal region or subsequently the tracheobronchial or pulmonary region. Also, only particles with aerodynamic diameters below 100µm have the potential to be inhaled by humans,and the MMADs of SSP and TSP are much higher than 100µm. Constituents with low water solubility reaching the lungs (particle size <10 µm)might be retained in the mucus and transported out of the respiratory tract.(2)For risk assessment purposes the inhalation absorption of SSP and TSP constituents is set at 100%.
Dry particulates will have to dissolve into the surface moisture of the skin before uptake can begin. Water-soluble constituents of SSP and TSP have potential to partition from the stratum corneum into the epidermis.(2) The log P value will be very low (below 0) and may be too hydrophilic to cross the lipid rich environment of the stratum corneum. Therefore, 10% dermal absorption of SSP and TSP constituents is proposed for risk assessment purposes.
Description of key information
A toxicokinetic assessment was performed based on the available data of the substance.
Key value for chemical safety assessment
- Bioaccumulation potential:
- low bioaccumulation potential
- Absorption rate - oral (%):
- 50
- Absorption rate - dermal (%):
- 10
- Absorption rate - inhalation (%):
- 100
Additional information
In aqueous environments, such as the body SSP is dissociated into the Calcium (Ca2+), the sulfate (SO4 2 -) ions and phosphate ions (PO4 3 -).
Ca2+is an essential ion in all organisms, where it plays a crucial role in processes ranging from the formation and maintenance of the skeleton to the temporal and spatial regulation of neuronal function. The Ca2+balance is maintained by the concerted action of three organ systems, including the gastrointestinal tract, bone, and kidney. An adult ingests on averageCa2+daily from whichis absorbed in the small intestine by a mechanism that is controlled primarily by the calciotropic hormones. To maintain the Ca2+balance, the kidney must excrete the same amount of Ca2+that the small intestine absorbs. This is accomplished by a combination of filtration of Ca2+across the glomeruli and subsequent re-absorption of the filtered Ca2+along the renal tubules. Bone turnover is a continuous process involving both resorption of existing bone and deposition of new bone. The above-mentioned Ca2+fluxes are stimulated by the synergistic actions of active vitamin D (1,25-dihydroxyvitamin D3) and parathyroid hormone.
Phosphate is a major intracellular anion which participates in providing energy for metabolism of substances and contributes to important metabolic and enzymatic reactions in almost all organs and tissues. Phosphate exerts a modifying influence on calcium concentrations, a buffering effect on acid-base equilibrium, and has a major role in the renal excretion of hydrogen ions. Phosphate is absorbed from, and to a limited extent secreted into, the gastrointestinal tract as orthophosphate. Transport of phosphate from the gut lumen is an active, energy-dependent process that is modified by several factors. Vitamin D stimulates phosphate absorption, an effect reported to precede its action on calcium ion transport. In adults, about two thirds of the ingested phosphate is absorbed, and that which is absorbed is almost entirely excreted into the urine. In growing children, phosphate balance is positive. Concentrations of phosphate in plasma are higher in children than in adults.
Absorption of sulphate depends on the amount ingested. 30 - 44% of sulfate was excreted in the 24-h urine after oral administration of magnesium or sodium sulfate (5.4 g sulfate) in volunteers. At high sulphate doses that exceed intestinal absorption, sulphate is excreted in feces. Intestinal sulphate may bind water into the lumen and cause diarrhoea in high doses. Sulphate is a normal constituent of human blood and does not accumulate in tissues. Sulphate levels are regulated by the kidney through a reabsorption mechanism. Sulphate is usually eliminated by renal excretion. It has also an important role in the detoxification of various endogenous and exogenous compounds, as it may combine with these to form soluble sulphate esters that are excreted in the urine.
For risk assessment purposes oral absorption of SSP is set at 50%, inhalation absorption 100% and dermal absorption 10%.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.