Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 946-615-6 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
- Ames Test (OECD 471, GLP, K, rel. 1): non
mutagenic up to limit or cytotoxic concentration in S. typhimurium TA
1535, TA 1537, TA 98, TA 100 & E.coli WP2uvrA.
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- From September 20 to October 24, 2017
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
- Remarks:
- GLP study conducted in compliance with OECD Guideline No. 471 without any deviation.
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Version / remarks:
- 1997
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Version / remarks:
- 30 May 2008
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EPA OPPTS 870.5100 - Bacterial Reverse Mutation Test (August 1998)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- other: Japanese Ministry of Economy, Trade and Industry, Japanese Ministry of Health, Labour and Welfare and Japanese Ministry of Agriculture, Forestry and Fisheries.
- Deviations:
- no
- Principles of method if other than guideline:
- Not applicable
- GLP compliance:
- yes (incl. QA statement)
- Remarks:
- inspected on 05 July 2016 / signed on 28 October 2016
- Type of assay:
- bacterial reverse mutation assay
- Specific details on test material used for the study:
- - Storage condition: at ambient temperature in the dark
- Target gene:
- Histidine and tryptophan gene for Salmonella typhimurium and Escherichia coli, respectively.
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
- Additional strain / cell type characteristics:
- not applicable
- Metabolic activation:
- with and without
- Metabolic activation system:
- The S9 Microsomal fraction was pre-prepared using standardized in-house procedures (outside the confines of this study). The 10% S9-mix was prepared before use using sterilized co-factors and maintained on ice for the duration of the test.
- Test concentrations with justification for top dose:
- Experiment 1 (Pre-incubation Method):
1.5, 5, 15, 50, 150, 500, 1500 and 5000 µg/plate in all strains with and without S9-mix.
Experiment 2 (Pre-Incubation Method):
15, 50, 150, 500, 1500, 5000 µg/plate in all strains with and without S9-mix. - Vehicle / solvent:
- - Vehicle(s)/solvent(s) used: Tetrahydrofuran
- Justification for choice of solvent/vehicle: The test item was insoluble in sterile distilled water, dimethyl sulphoxide but did produce a doseable suspension in dimethyl formamide and acetonitrile at 50 mg/mL, acetone at 100 mg/mL and tetrahydrofuran at 100 and 200 mg/mL in solubility checks performed in house. The test item formed the best doseable suspension in tetrahydrofuran at 200 mg/mL, therefore, Tetrahydrofuran was selected as the vehicle. The appearance of the formulation was an opaque amber-coloured suspension at 200 mg/mL.
- Preparation of test materials: The test item was accurately weighed and appropriate dilutions prepared in pre-dried tetrahydrofuran by mixing on a vortex mixer and sonication for 20 minutes at 40 °C on the day of each experiment. The test item was confirmed as a UVCB product, therefore no correction was required for purity. Tetrahydrofuran is toxic to the bacterial cells at and above 50 µL (0.05 mL), therefore all of the formulations were prepared at concentrations four times greater than required on Vogel-Bonner agar plates. To compensate, each formulation was dosed using 25 µL (0.025 mL) aliquots. Tetrahydrofuran is considered an acceptable vehicle for use in this test system (Maron et al., 1981).
All formulations were used within four hours of preparation and were assumed to be stable for this period. - Untreated negative controls:
- yes
- Remarks:
- untreated: spontaneous mutation rates
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Tetrahydrofuran
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- 4-nitroquinoline-N-oxide
- 9-aminoacridine
- N-ethyl-N-nitro-N-nitrosoguanidine
- Remarks:
- Without S9-mix
- Untreated negative controls:
- yes
- Remarks:
- untreated: spontaneous mutation rates
- Negative solvent / vehicle controls:
- yes
- Remarks:
- Tetrahydrofuran
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- benzo(a)pyrene
- other: 2-Aminoanthracene
- Remarks:
- With S9-mix
- Details on test system and experimental conditions:
- SOURCE OF TEST SYSTEM: The bacteria used in the test were obtained from the University of California, Berkeley, and from the British Industrial Biological Research Association.
METHOD OF APPLICATION: preincubation (The test item was confirmed to either have unknown volatility or was suspected to be volatile, therefore all testing was performed using the pre-incubation method (20 minutes at 37 ± 3 °C) except for the untreated controls).
DURATION
- Preincubation period: 20 minutes with shaking
- Exposure duration: approximately 48 hours
NUMBER OF REPLICATIONS: Triplicate plates per dose level in experiment 1 and experiment 2.
DETERMINATION OF CYTOTOXICITY
- Method: The plates were viewed microscopically for evidence of thinning.
OTHERS:
After incubation, the plates were assessed for numbers of revertant colonies using an automated colony counting system. The plates were viewed microscopically for evidence of thinning (toxicity). - Rationale for test conditions:
- Experiment 1 - Maximum concentration was 5000 μg/plate (the maximum recommended dose level).
Experiment 2 - Maximum concentration was 5000 μg/plate (the maximum recommended dose level). Up to six test item dose levels per bacterial strain were selected in the second mutation test in order to achieve both a minimum of four non-toxic dose levels and the toxic limit of the test item. - Evaluation criteria:
- There are several criteria for determining a positive result. Any, one, or all of the following can be used to determine the overall result of the study:
- A dose-related increase in mutant frequency over the dose range tested (De Serres and Shelby, 1979).
- A reproducible increase at one or more concentrations.
- Biological relevance against in-house historical control ranges.
- Statistical analysis of data as determined by UKEMS (Mahon et al., 1989).
- Fold increases greater than two times the concurrent solvent control for any tester strain (especially if accompanied by an out of historical range response (Cariello and Piegorsch, 1996)).
A test item will be considered non-mutagenic (negative) in the test system if the above criteria are not met. - Statistics:
- NA
- Key result
- Species / strain:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not applicable
- Positive controls validity:
- valid
- Additional information on results:
- TEST SPECIFIC CONFOUNDING FACTORS
- Effects of pH: Not applicable
- Effects of osmolality: Not applicable
- Evaporation from medium: No data
- Water solubility: The test item was insoluble in sterile distilled water, dimethyl sulphoxide but did produce a doseable suspension in dimethyl formamide and acetonitrile at 50 mg/mL, acetone at 100 mg/mL and tetrahydrofuran at 100 and 200 mg/mL in solubility checks performed in house.
- Precipitation: No test item precipitate was observed on the plates at any of the doses tested in either the presence or absence of S9-mix in both experiments.
- Other confounding effects: None
COMPARISON WITH HISTORICAL CONTROL DATA:
Not needed (no statistical significant increase were noted)
The vehicle (tetrahydrofuran) control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated.
ADDITIONAL INFORMATION ON CYTOTOXICITY:
In Experiment 1, there was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix).
In Experiment 2, similarly, there was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix).
CONCLUSION:
There were no biologically relevant increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 1. Similarly, no biologically relevant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix) in Experiment 2. - Remarks on result:
- other:
- Remarks:
- Table of results are in "Attached background documents"
- Conclusions:
- Under the test condition, test material is not mutagenic with and without metabolic activation in S. typhimurium (strains TA1535, TA1537, TA98 and TA100) and E.coli WP2 uvrA.
- Executive summary:
In a reverse gene mutation assay performed according to the OECD test guideline No. 471 and in compliance with GLP, Salmonella typhimurium strains TA1535, TA1537, TA98 and TA100 and Escherichia coli strain WP2uvrA were treated with the test item diluted in acetone both in the presence and absence of metabolic activation system (10% liver S9 in standard co-factors) using the Ames pre‑incubation methods in Experiment 1 and 2.
The dose range for Experiment 1 was predetermined and was 1.5 to 5000 mg/plate. There was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix). The experiment was repeated on a separate day using fresh cultures of the bacterial strains and fresh test item formulations. the same maximum dose level was used as the maximum dose in the first mutation test (5000 µg/plate). Up to six test item concentrations were selected in Experiment 2 in order to achieve both four non‑toxic dose levels and the toxic limit of the test item.
The vehicle (tetrahydrofuran) control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated.
In Experiment 1, there were no increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation. In Experiment 2, similarly, there were any increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation.
No test item precipitate was observed on the plates at any of the doses tested in either the presence or absence of S9-mix in both experiments.
Under the test condition, the test material is not mutagenic with and without metabolic activation in S. typhimurium (strains TA1535, TA1537, TA98 and TA100) and E.coli WP2 uvrA.
This study is considered as acceptable and satisfies the requirement for reverse gene mutation endpoint.
Reference
Cf Tables of results in attached background material
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Genetic toxicity in vivo
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Table 7.6/1: Summary of genotoxicity tests
Test n° |
Test / Guideline Reliability |
Focus |
Strains tested |
Metabolic activation |
Test concentration |
Statement |
1
Envigo, 2017 |
Ames Test (OECD 471) K, rel. 1 |
Gene mutation |
TA 1535, TA 1537, TA 98, TA 100 E. coli WP2uvrA |
-S9 +S9 |
Up to limit concentration |
-S9 : non mutagenic +S9 : non mutagenic |
Gene mutation Assays (Tests n° 1):
A Bacterial Reverse mutation Assay (Ames test) was performed according to OECD guideline No. 471 with the substance (Test n°1, see Table 7.6/1). No significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains under the test condition, with any dose of the substance, either in the presence or absence of metabolic activation. The substance does not induce gene mutations in bacteria whereas all positive control chemicals (with and without metabolic activation) induced significant increase of colonies. The substance is therefore considered as non-mutagenic according to the Ames test.
Justification for classification or non-classification
Harmonized classification:
The test material has no harmonized classification for human health according to the Regulation (EC) No. 1272/2008.
Self-classification:
Based on the available data, no additional classification is proposed regarding germ cell mutagenicity according to the Regulation (EC) No. 1272/2008 (CLP) and to the Globally Harmonised System of classification and labelling of chemicals (GHS).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.