Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 232-417-0 | CAS number: 8017-16-1
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Repeated dose toxicity: oral
Administrative data
- Endpoint:
- sub-chronic toxicity: oral
- Type of information:
- migrated information: read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Study period:
- No data
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: see 'Remark'
- Remarks:
- Meets generally accepted scientific standards with acceptable restrictions: The test substance identity has not been clarified in the study report, however composition of the test material is known and the study is considered to be reliable for use as a key study. The reliability has been amended in accordance with 'practical guide 6: How to report read-across and categories' which states that the maximum reliability for a read-across study is 2. The study is considered to be adequate and reliable for the purpose of registration under REACH (Regulation (EC) No. 1907/2006). JUSTIFICATION FOR READ-ACROSS AND CHOICE OF DATA (applicable to worker and general population DNELs): A Maximum tolerable daily intake (MTDI) value of 70 mg/kg bw /day of phosphorus as calculated by the Joint FAO/WHO Expert Committee on Food Additives (JEFCA) is available. This can be applied to all the substances discussed as any toxicity effects noted via the oral route are not attributable to the cation but are as a result of high doses of phosphates. This value was based on data generated on a large number of different inorganic phosphates. On this basis a number of sodium, sodium aluminium, potassium, calcium and magnesium orthophosphates (those used as food additives and their analogues) are considered as suitable for read-across for the repeated-dose toxicity endpoint for the following reasons: - All substances are similar inorganic ionic compounds. In aqueous solutions they will dissociate to their cationic and anionic forms and therefore these can be viewed as separate moieties with regards to toxicity. - The Na+, K+, Ca2+and Mg2+cations are naturally occurring essential minerals that are highly regulated by homeostatic mechanisms. As such recommended intake values for all exist and are about the key NOAEL taken from the data and therefore no further assessment of their contribution to the toxicity of the materials is necessary. - The Al3+is present in the substance tested in the studies from which the values for risk assessment are derived and therefore no further consideration of the toxicity of the aluminium cation is required as this is already taken into account. - The phosphate moiety is not considered to differ to that from any other inorganic orthophosphate from a toxicological point of view for the purpose of risk assessment and the derivation of appropriate DNELs it is considered to be appropriate to use the most reliable data available for orthophosphates (see endpoint records and summary) and no further data was generated on calcium or magnesium orthophosphates - The main toxicological finding in repeated dose studies with most inorganic phosphates is nephrocalcinosis (calcification of the kidneys). It is noted by JEFCA that rats are particularly susceptible to these effects and these effects were taken into account when deriving the MTDI value. Please see the endpoint summary provided under ‘Toxicological Information’ for a full detailed justification.
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 1 972
- Report date:
- 1972
Materials and methods
Test guideline
- Qualifier:
- no guideline followed
- Deviations:
- not applicable
- Principles of method if other than guideline:
- A 90 day oral toxicity study was conducted with purebred beagle dogs fed KASAL at dietary levels of 0.3, 1.0 and 3.0%.
- GLP compliance:
- no
- Remarks:
- Study predates GLP
- Limit test:
- no
Test material
- Reference substance name:
- Phosphoric acid, aluminium sodium salt
- EC Number:
- 232-090-4
- EC Name:
- Phosphoric acid, aluminium sodium salt
- Cas Number:
- 7785-88-8
- Reference substance name:
- sodium aluminium phosphate (15:3:8)
- IUPAC Name:
- sodium aluminium phosphate (15:3:8)
- Test material form:
- solid: particulate/powder
- Remarks:
- migrated information: powder
- Details on test material:
- - Name of test material (as cited in study report): KASAL
Constituent 1
Constituent 2
Test animals
- Species:
- dog
- Strain:
- Beagle
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Source: Laboratory's own IBTL colony
- Age at study initiation: See Table 1
- Weight at study initiation: See Table 1
- Fasting period before study: No data
- Housing: Animals were housed in kennels equipped with outside runs. Four dogs of the same sex and group were accommodated in a single kennel.
- Diet (e.g. ad libitum): Stock diet (Golden Choice Meals, Adolph Coors Company, Denver, Colorado) available ad libitum
- Water: available ad libitum
- Acclimation period: The dogs were observed for two weeks prior to the start of the investigation during which time they were reimmunised against rabies, distemper, infectious canine hepatitis and leptospirosis and rendered clinically free of any existing parasitic infestation.
ENVIRONMENTAL CONDITIONS
No data
IN-LIFE DATES: No data
Administration / exposure
- Route of administration:
- oral: feed
- Vehicle:
- unchanged (no vehicle)
- Details on oral exposure:
- PREPARATION OF DOSING SOLUTIONS: No data
DIET PREPARATION
- Rate of preparation of diet (frequency): At the beginning of each week
- Mixing appropriate amounts with (Type of food): The appropriate dietary constituents for each group were thoroughly blended in a Hobart mixer. Preweighed amounts were distributed into self-feeding units and maintained in excess of the animals' consumption. One such unit was available to the dogs in each kennel on an ad libitum basis 24 hours per day.
- Storage temperature of food: No data
VEHICLE
Not applicable - Analytical verification of doses or concentrations:
- no
- Details on analytical verification of doses or concentrations:
- Not applicable
- Duration of treatment / exposure:
- 90 days
- Frequency of treatment:
- Continuous exposure in feed
Doses / concentrationsopen allclose all
- Remarks:
- Doses / Concentrations:
0.3, 1.0 and 3.0%
Basis:
nominal in diet
- Remarks:
- Doses / Concentrations:
Male: 94.23, 322.88 and 1107.12 mg/kg bw/day Female: 129.31, 492.77 and 1433.56 mg/kg bw/day
Basis:
other: Calculated using the mean of the weekly body weight and food consumption (Week 5 has been discounted from the 492.77 mg/kg bw/day femal group due to illegible figures in the report)
- No. of animals per sex per dose:
- 4 animals/sex/dose
- Control animals:
- yes, plain diet
- Details on study design:
- No data
- Positive control:
- Not used
Examinations
- Observations and examinations performed and frequency:
- CAGE SIDE OBSERVATIONS: Yes
- Time schedule: Daily
DETAILED CLINICAL OBSERVATIONS: Yes
- Time schedule: Daily
BODY WEIGHT: Yes
- Time schedule for examinations: The body weight of each dog in every group was determined and recorded at the start of the study and weekly thereafter.
FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study): At the end of each 7 day period, all unconsumed food was collected and weighed. Food consumption was calculated and recorded.
FOOD EFFICIENCY: No
OPHTHALMOSCOPIC EXAMINATION: No
HAEMATOLOGY: Yes
- Time schedule for collection of blood: Prior to inception of the study and after 42 and 84 days of testing
- Anaesthetic used for blood collection: No data
- Animals fasted: No data
- How many animals: all animals
- Parameters: Total leukocyte count, erythrocyte count, haemoglobin, haematocrit, differential leukocyte count
CLINICAL CHEMISTRY: Yes
- Time schedule for collection of blood: Prior to inception of the study and after 42 and 84 days of testing
- Animals fasted: No data
- How many animals: all animals
- Parameters: Blood urea nitrogen, serum glucose, serum alkaline phosphatase, serum glutamic-oxalacetic transaminase, serum glutamic-pyruvic transaminase
URINALYSIS: Yes
- Time schedule for collection of urine: Prior to inception of the study and after 42 and 84 days of testing
- Metabolism cages used for collection of urine: No data
- Animals fasted: No data
- Parameters: Albumin, glucose, pH, microscopic elements (leukocytes, erythrocytes, crystals)
NEUROBEHAVIOURAL EXAMINATION: No - Sacrifice and pathology:
- GROSS PATHOLOGY: Yes
All major tissues and organs were examined grossly. The weights of the following organs were obtained: liver, kidneys, heart, brain, spleen, gonads, adrenal glands, thyroid gland and pituitary gland.
HISTOPATHOLOGY: Yes (see table) - Other examinations:
- None
- Statistics:
- No data
Results and discussion
Results of examinations
- Clinical signs:
- no effects observed
- Mortality:
- no mortality observed
- Body weight and weight changes:
- no effects observed
- Food consumption and compound intake (if feeding study):
- no effects observed
- Food efficiency:
- not examined
- Water consumption and compound intake (if drinking water study):
- not examined
- Ophthalmological findings:
- not examined
- Haematological findings:
- no effects observed
- Clinical biochemistry findings:
- no effects observed
- Urinalysis findings:
- no effects observed
- Behaviour (functional findings):
- not examined
- Organ weight findings including organ / body weight ratios:
- no effects observed
- Gross pathological findings:
- no effects observed
- Histopathological findings: non-neoplastic:
- no effects observed
- Histopathological findings: neoplastic:
- not examined
- Details on results:
- CLINICAL SIGNS AND MORTALITY: No untoward behavioural reactions were recorded during the investigation and no fatalities occurred.
BODY WEIGHT AND WEIGHT GAIN: No significant deviations from normally expected body weight gains for dogs of this age were noted (see Table 1).
FOOD CONSUMPTION AND COMPOUND INTAKE : There is no significant difference between the untreated control group and the three test groups (see Table 2).
HAEMATOLOGY: No significant abnormalities were noted at any level tested (see attached Tables 3-11).
CLINICAL CHEMISTRY: There is no significant difference between the untreated control group and the three test groups (see attached Tables 12-16).
URINALYSIS: Urinalysis revealed no significant abnormalities at any of the levels tested (see attached Tables 17-23).
ORGAN WEIGHTS: No significant abnormalities were noted among any levels tested (see attached Tables 24-32).
GROSS PATHOLOGY and HISTOPATHOLOGY: NON-NEOPLASTIC: There are no changes that can be attributed to the test material or the test procedure. All of the findings noted are attributed to spontaneous disease. (see Tables 33-36). All tissues and organs not mentioned were normal.
Effect levels
open allclose all
- Dose descriptor:
- NOAEL
- Effect level:
- 322.88 mg/kg bw/day (nominal)
- Based on:
- other: test material, calculated based on food consumption
- Sex:
- male
- Basis for effect level:
- other: histopathology; specific to kidneys
- Dose descriptor:
- NOAEL
- Effect level:
- 492.77 mg/kg bw/day (nominal)
- Based on:
- other: test material, calculated based on food consumption
- Sex:
- female
- Basis for effect level:
- other: histopathology; specific to kidneys
Target system / organ toxicity
- Critical effects observed:
- not specified
Any other information on results incl. tables
Table 1: Mean body weight data and age for males and females
Group |
Dietary level (%) |
Males |
Females |
||||
Mean age at inception of test (months) |
Mean body weight at week 0 (kg) |
Overall weight gain (kg) |
Mean age at inception of test (months) |
Mean body weight at week 0 (kg) |
Overall weight gain (kg) |
||
UC |
None |
5.9 |
9.5 |
1.9 |
6.0 |
7.3 |
1.7 |
T-I |
0.3% |
5.9 |
8.2 |
1.8 |
5.6 |
7.6 |
1.4 |
T-II |
1.0% |
5.9 |
9.2 |
2.1 |
5.6 |
5.5 |
1.4 |
T-III |
3.0% |
6.0 |
7.6 |
2.0 |
5.5 |
7.1 |
1.4 |
Table 2: Mean food consumption data
Week |
- |
Mean food consumed during week indicated (g/day) |
|||||||
Sex: |
Males |
Females |
|||||||
Group: |
UC |
T-I |
T-II |
T-III |
UC |
T-I |
T-II |
T-III |
|
Dietary level (%): |
None |
0.3 |
1.0 |
3.0 |
None |
0.3 |
1.0 |
3.0 |
|
1 |
- |
352 |
375 |
388 |
401 |
380 |
451 |
436 |
385 |
2 |
- |
361 |
381 |
385 |
430 |
417 |
407 |
458 |
418 |
3 |
- |
366 |
362 |
359 |
392 |
397 |
378 |
410 |
386 |
4 |
- |
338 |
371 |
353 |
342 |
366 |
382 |
407 |
375 |
5 |
- |
356 |
358 |
336 |
363 |
399 |
359 |
391 |
369 |
6 |
- |
348 |
335 |
332 |
366 |
375 |
352 |
394 |
351 |
7 |
- |
319 |
347 |
328 |
364 |
343 |
369 |
398 |
352 |
8 |
- |
285 |
305 |
277 |
323 |
323 |
331 |
358 |
346 |
9 |
- |
315 |
335 |
268 |
325 |
321 |
361 |
377 |
363 |
10 |
- |
333 |
303 |
274 |
328 |
362 |
370 |
361 |
356 |
11 |
- |
300 |
336 |
321 |
317 |
341 |
332 |
334 |
330 |
12 |
- |
286 |
268 |
261 |
287 |
298 |
302 |
279 |
288 |
13 |
- |
281 |
338 |
304 |
346 |
285 |
344 |
423 |
350 |
Mean |
- |
326 |
340 |
322 |
353 |
354 |
364 |
387 |
359 |
Table 33: Gross and histological findings – Untreated control group
Dog number and sex |
Organ |
Gross |
Grade |
Histologic |
Grade |
1-M |
Liver |
- |
- |
Focal lymphoid infiltration |
+ |
|
Lungs |
- |
- |
Focal interstitial pneumonia |
++ |
|
Prostate |
- |
- |
Chronic focalprostatitis |
++ |
|
Spleen |
- |
- |
Haemosiderosis |
+ |
2-M |
Lungs |
- |
- |
Chronic interstitial pneumonia |
++ |
3-M |
Heart |
- |
- |
Congestion |
+ |
|
Liver |
- |
- |
Focal lymphoid infiltration |
+ |
|
Lungs |
- |
- |
Focal interstitial pneumonia |
++ |
4-M |
Liver |
- |
- |
Congestion |
+ |
|
Lungs |
- |
- |
Chronic interstitial pneumonia |
++ |
|
Spleen |
- |
- |
Haemosiderosis |
+ |
5-F |
Liver |
- |
- |
Congestion |
++ |
|
|
|
|
Focal lymphoid infiltration |
+ |
|
Lungs |
- |
- |
Chronic interstitial pneumonia |
+ |
|
|
- |
- |
Hyperemia |
+ |
6-F |
Liver |
|
|
Congestion |
+ |
|
Lungs |
- |
- |
Chronic interstitial pneumonia |
+ |
|
Uterus |
- |
- |
In estrus |
- |
7-F |
Ovaries |
- |
- |
Proestrus |
- |
|
Liver |
- |
- |
Congestion |
++ |
8-F |
Lungs |
- |
- |
Chronic interstitial pneumonia |
+ |
Table 34: Gross and histological findings – Test group I: 0.3 percent
Dog number and sex |
Organ |
Gross |
Grade |
Histologic |
Grade |
9-M |
Liver |
- |
- |
Congestion |
+ |
Lungs |
- |
- |
Hyperemia |
+ |
|
10-M |
Liver |
- |
- |
Congestion |
+ |
|
Lungs |
- |
- |
Chronic interstitial pneumonia |
+ |
11-M |
Kidneys |
- |
- |
Focal lymphoid infiltration |
+ |
|
Lungs |
- |
- |
Congestion Focal lymphoid infiltration |
+ + |
12 -M |
Liver |
- |
- |
Congestion |
+ |
|
Lung |
- |
- |
Chronic interstitial pneumonia |
++ |
13-F |
Liver |
- |
- |
Focal lymphoid infiltration |
+ |
Lungs |
- |
- |
Chronic interstitial pneumonia |
+ |
|
14-F |
Liver |
- |
- |
Congestion |
++ |
|
Lungs |
- |
- |
Bronchopneumonia |
++ |
15-F |
Liver |
- |
- |
Focal lymphoid infiltration |
+ |
Lungs |
- |
- |
Chronic interstitial pneumonia |
++ |
|
16 -F | Liver | - | - | Congestion | + |
Lungs | - | - | Chronic interstitial pneumonia | ++ |
Table 35: Gross and histological findings – Test group II: 1.0 percent
Dog number and sex |
Organ |
Gross |
Grade |
Histologic |
Grade |
17-M |
Lungs |
- |
- |
Hyperemia Chronic interstitial pneumonia |
+ ++ |
18-M |
Liver |
- |
- |
Congestion |
+ |
|
Lungs |
- |
- |
Chronic interstitial pneumonia |
+ |
19 -M |
- |
- |
- |
- |
- |
20 -M |
Lungs |
- |
- |
Chronic interstitial pneumonia |
+ |
21 -F |
Liver |
- |
- |
-Congestion |
+ |
Lungs |
- |
- |
Chronic interstitial pneumonia Bronchopneumonia |
++ ++ |
|
22-F |
Liver |
- |
- |
Congestion |
+ |
Lungs |
- |
- |
Chronic interstitial pneumonia |
+ |
|
23 -F |
Liver |
- |
- |
Congestion |
+ |
Lungs |
- |
- |
Chronic interstitial pneumonia |
+ |
|
|
Mesenteric lymph node |
- |
- |
Hyperemia |
+ |
|
Pancreas |
- |
- |
Hyperemia |
+ |
24 -F |
Lungs |
- |
- |
Chronic interstitial pneumonia |
+ |
Table 36: Gross and histological findings – Test group III: 3.0 percent
Dog number and sex |
Organ |
Gross |
Grade |
Histologic |
Grade |
25-M |
Liver |
- |
- |
Congestion |
+ |
|
Kidney |
- |
- |
Tubular concretions |
+++ |
26-M |
Liver |
- |
- |
Congestion |
+ |
|
Kidney |
- |
- |
Tubular concretions |
+++ |
27-M |
Liver |
- |
- |
Congestion |
++ |
Lung |
- |
- |
Chronic interstitial pneumonia |
+ |
|
|
Prostate |
- |
- |
Chronic focal prostatitis |
+ |
28 -M |
Kidneys |
- |
- |
Focal lymphoid infiltration |
+ |
Lungs |
- |
- |
Chronic interstitial pneumonia |
++ |
|
29 -F |
Liver |
- |
- |
Congestion |
++ |
Lungs |
- |
- |
Chronic interstitial pneumonia |
++ |
|
30 -F |
Liver |
- |
- |
Congestion |
+ |
|
Lungs |
- |
- |
Chronic interstitial pneumonia |
+ |
31-F |
Liver |
- |
- |
Congestion |
+ |
32 -F | Gonads | - | - | Calcified follicle | + |
Kidneys | - | - | Tubular concretions | +++ | |
Liver | - | - | Focal lymphoid infiltration | + | |
Spinal cord | - | - | Calcified debris in central canal | + |
Grading system:
+ = minimal or slight
++ = mild
+++ = moderate
++++ = severe
Applicant's summary and conclusion
- Conclusions:
- The 90-day oral administration of KASAL to purebred beagle dogs at dietary levels of 0.3, 1.0 and 3.0% revealed in three of the Group T-III animals renal concretions which were unusually large and more numerous than those normally observed in untreated dogs. The few other calcified microconcretions present in the lumen of renal tubules located at the corticomedullary junction and/or medulla of the kidney were attributed to normally occurring disease.
No significant other changes were noted. Thus the dietary level of 1% can be considered as NOAEL (this is equivalent to 322.88 mg/kg bw/day).
This study is considered to satisfy the guideline requirements for this endpoint and also be adequate for the purposes of risk assessment. Therefore, the study is submitted as a key study and the NOAEL reported in this study is used to derive the inhalation and dermal DNELs. On consideration of all the available data, the ratio of sodium, aluminium and phosphate in the test material is not considered to be of key relevance in determining the derived no effect levels.
Read-across from sodium aluminium phosphate to the substance to be registered is justified on the following basis: Sodium aluminium phosphate is essentially a sodium orthophosphate that also contains an aluminium ion. A Maximum tolerable daily intake (MTDI) value of 70 mg/kg bw /day of phosphorus as calculated by the Joint FAO/WHO Expert Committee on Food Additives (JEFCA) is available. This can be applied to all the substances discussed as any toxicity effects noted via the oral route are not attributable to the cation but are as a result of high doses of phosphates. This value was based on data generated on a large number of different inorganic phosphates.
On this basis a number of sodium, sodium aluminium, potassium, calcium and magnesium orthophosphates (those used as food additives and their analogues) are considered as suitable for read-across for the repeated-dose toxicity endpoint for the following reasons:
- All substances are similar inorganic ionic compounds. In aqueous solutions they will dissociate to their cationic and anionic forms and therefore these can be viewed as separate moieties with regards to toxicity.
- The Na+, K+, Ca2+and Mg2+cations are naturally occurring essential minerals that are highly regulated by homeostatic mechanisms. As such recommended intake values for all exist and are about the key NOAEL taken from the data and therefore no further assessment of their contribution to the toxicity of the materials is necessary.
- The Al3+is present in the substance tested in the studies from which the values for risk assessment are derived and therefore no further consideration of the toxicity of the aluminium cation is required as this is already taken into account.
- The phosphate moiety is not considered to differ to that from any other inorganic orthophosphate from a toxicological point of view for the purpose of risk assessment and the derivation of appropriate DNELs it is considered to be appropriate to use the most reliable data available for orthophosphates (see endpoint records and summary) and no further data was generated on calcium or magnesium orthophosphates
- The main toxicological finding in repeated dose studies with most inorganic phosphates is nephrocalcinosis (calcification of the kidneys). It is noted by JEFCA that rats are particularly susceptible to these effects and these effects were taken into account when deriving the MTDIvalue.
Please see the endpoint summary provided under ‘Toxicological Information’ for a full detailed justification.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.