Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 232-417-0 | CAS number: 8017-16-1
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Toxicity to microorganisms
Administrative data
Link to relevant study record(s)
Description of key information
A waiver is proposed to cover this endpoint, and supporting evidence with a K4 study (Ishii et al., 1981) is provided.
Key value for chemical safety assessment
Additional information
In accordance with Annex XI, section 1.5 of Regulation (EC) No 1907/2006 (REACH) a read across approach may be used when substances have similarities based on the likelihood of common breakdown products via physical and biological processes, which result in structurally similar chemicals. As mentioned in the hydrolysis summary, polyphosphoric acid is hydrolysed to orthophosphate in environmental conditions. Thus a read across from orthophosphoric acid to pyrophosphoric acid is justified. In addition, studies performed with pyrophosphate salts can also be used. Pyrophosphate salts are ionic in nature and therefore dissociate readily into cations and anions in water. Cations as potassium and sodium are essential micronutrients that are ubiquitous in the enviroment. As such, their uptake is tightly regulated and is therefore not considered to pose a risk for ecotoxicity. In environmental conditions, the pyrophosphate anion is unstable and a number of different processes result to an ultimate breakdown product of orthophosphate.
According to REACH Annex VIII, this endpoint does not need to be fulfilled if there are mitigating factors indicating that microbial toxicity is unlikely to occur. Phoshoric acid in water will dissociate in phosphate anions and H+ ions, the latter causing a decrease of pH. However, pH levels in wastewater are typically adjusted in wastewater treatment plants to ensure a neutral discharge to the receiving water (e.g., pH between 6-9) and in order to prevent inhibitory effects on the growth of microorganisms. Therefore, the microorganisms are essentially not exposed to phosphoric acid, but to phosphate instead. According to REACH Annex VIII column 2, the study would not need to be conducted. Furthermore, phosphate is an essential nutrient for activated sludge systems, as it comprises part of the biomass in the activated sludge. Typical influent values in domestic sewage are as follows: Total phosphate as P: 4 – 15 mg/L; Inorganic phosphate as P: 3-10 mg/L. When influent phosphate levels are at such levels that phosphate could pass through a treatment plant and result in excessive levels in a receiving water, additional unit operations are added to a treatment plant (e.g., precipitation) to remove excess phosphate. In conclusion, both the pH and the phosphate concentrations will be kept at an acceptable level within a sewage treatment plant to prevent adverse effects to microorganisms and the receiving waters.
As a supportive evidence, Ishii et al. (1981) assessed the toxicity of phosphoric acid to microorganisms by using the oxygen absorption rate of activated sludge. The toxicity of phosphoric acid to protozoa was measured by looking at mortality. The IC50 values were 270 and 240 mg/L, respectively. It can be concluded that phosphoric acid is of low toxicity to microorganisms.
In addition, a toxicity test performed on STP microorganisms with a pyrophosphate salt ( disodium dihydrogenpyrophosphate) has been investigated according to OECD TG 209. An EC50_3h of greater than 1000 mg/L and a NOEC of 1000 mg/L were determined (Clarke, 2010).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.