Registration Dossier

Administrative data

Key value for chemical safety assessment

Additional information

Justification for grouping of substances and read-across

The Glycol ester category covers esters of an aliphatic diol (ethylene glycol (EG), propylene glycol (PG) or 1,3-butyleneglycol (1,3-BG)) and one or two carboxylic fatty acid chains. The fatty acid chains comprise carbon chain lengths ranging from C6 to C18, mainly saturated but also mono unsaturated C16 and C18, branched C18 and epoxidized C18. Fatty acid esters are generally produced by chemical reaction of an alcohol (e.g. ethylene glycol) with an organic acid (e.g. stearic acid) in the presence of an acid catalyst (Radzi et al., 2005). The esterification reaction is started by a transfer of a proton from the acid catalyst to the acid to form an alkyloxonium ion. The acid is protonated on its carbonyl oxygen followed by a nucleophilic addition of a molecule of the alcohol to a carbonyl carbon of acid. An intermediate product is formed. This intermediate product loses a water molecule and a proton to give an ester (Liu et al, 2006; Lilja et al., 2005; Gubicza et al., 2000; Zhao, 2000). Di- and/or monoesters are the final products of esterification of an aliphatic diol and fatty acids.

In accordance with Article 13 (1) of Regulation (EC) No 1907/2006, "information on intrinsic properties of substances may be generated by means other than tests, provided that the conditions set out in Annex XI are met. In particular for human toxicity, information shall be generated whenever possible by means other than vertebrate animal tests", which includes the use of information from structurally related substances (grouping or read-across).

Having regard to the general rules for grouping of substances and read-across approach laid down in Annex XI, Item 1.5, of Regulation (EC) No 1907/2006, whereby substances may be considered as a category provided that their physicochemical, toxicological and ecotoxicological properties are likely to be similar or follow a regular pattern as a result of structural similarity, the substances listed below are allocated to the category of Glycol esters.

 

CAS

EC name

Molecular weight

Carbon number in Acid

Carbon number in dihydroxy alcohol

Total Carbons in Glycol Esters

CAS 111-60-4 (b)

Glycol stearate

MW 328.53

C18

C2

C20

CAS 624-03-3 (a)          

Ethane-1,2-diyl palmitate

MW 538.89

C16

C2

C34

CAS 627-83-8               

Ethylene distearate

MW 563.0

C18

C2

C38

CAS 91031-31-1

Fatty acids, C16-18, esters with ethylene glycol

MW 300.48 - 563.00

C16-18

C2

C18-38

CAS 151661-88-0

Fatty acids, C18 and C18 unsatd. epoxidized, ester with ethylene glycol

MW 328.54 - 622.97

C18

C2

C20-38

CAS 29059-24-3

Myristic acid, monoester with propane-1,2-diol

MW 286.45

C14

C3

C17

CAS 1323-39-3

Stearic acid, monoester with propane-1,2-diol

MW 342.55

C18

C3

C21

CAS 37321-62-3

Dodecanoic acid, ester with 1,2-propanediol

MW 258.40 - 440.71

C12

C3

C15-27

CAS 68958-54-3

1-methyl-1,2-ethanediyl diisooctadecanoate

MW 609.03

C18

C3

C39

CAS 31565-12-5

Octanoic acid ester with 1,2-propanediol, mono- and di-

MW 202.29 - 328.49

C8

C3

C11-19

CAS 85883-73-4

Fatty acids, C6-12, esters with propylene glycol

MW 202.29 - 440.71

C6-12

C3

C9-27

CAS 68583-51-7

Decanoic acid, mixed diesters with octanoic acid and propylene glycol

MW 328.49 - 384.59

C8-10

C3

C19-23

CAS 84988-75-0

Fatty acids, C14-18 and C16-18-unsatd., esters with propylene glycol

MW 286.46 - 609.02

C14-18

C3

C17-39

CAS 853947-59-8

Butylene glycol dicaprylate / dicaprate

MW 342.52 - 398.63

C8-10

C4

C20-24

(a) Category members subject to registration are indicated in bold font.

(b) Substances not subject to registration are indicated in normal font.

 

Grouping of substances into this category is based on:

(1) common functional groups: the substances of the category are characterized by ester bond(s) between an aliphatic diol (ethylene glycol (EG), propylene glycol (PG) or 1,3-butyleneglycol (1,3-BG)) and one or two carboxylic fatty acid chains. The fatty acid chains comprise carbon chain lengths ranging from C6 to C18, mainly saturated but also mono unsaturated C16 and C18, branched C18 and epoxidized C18, are included into the category; and

(2) common precursors and the likelihood of common breakdown products via biological processes, which result in structurally similar chemicals: glycol esters are expected to be initially metabolized via enzymatic hydrolysis in the corresponding free fatty acids and the free glycol alcohols such as ethylene glycol and propylene glycol. The hydrolysis represents the first chemical step in the absorption, distribution, metabolism and excretion (ADME) pathways expected to be similarly followed by all glycol esters. The hydrolysis is catalyzed by classes of enzymes known as carboxylesterases or esterases (Heymann, 1980). Ethylene and propylene glycol are rapidly absorbed from the gastrointestinal tract and subsequently undergo rapid biotransformation in liver and kidney (ATSDR, 1997; ICPS, 2001; WHO, 2002; ATSDR, 2010). Propylene glycol will be further metabolized in liver by alcohol dehydrogenase to lactic acid and pyruvic acid which are endogenous substances naturally occurring in mammals (Miller & Bazzano, 1965, Ritchie, 1927). Ethylene glycol is first metabolised by alcohol dehydrogenase to glycoaldehyde, which is then further oxidized successively to glycolic acid, glyoxylic acid, oxalic acids by mitochondrial aldehyde dehydrogenase and cytosolic aldehyde oxidase (ATSDR, 2010; WHO, 2002). The anabolism of fatty acids occurs in the cytosol, where fatty acids esterified into cellular lipids that are the most important storage form of fatty acids (Stryer, 1994). The catabolism of fatty acids occurs in the cellular organelles, mitochondria and peroxisomes via a completely different set of enzymes. The process is termed ß-oxidation and involves the sequential cleavage of two-carbon units, released as acetyl-CoA through a cyclic series of reaction catalyzed by several distinct enzyme activities rather than a multienzyme complex (Tocher, 2003); and

(3) constant pattern in the changing of the potency of the properties across the category:

(a) Physico-chemical properties: The physico-chemical properties of the category members are similar or follow a regular pattern over the category. The pattern observed depends on the fatty acid chain length and the degree of esterification (mono- or diesters). The molecular weight of the category members ranges from 202.29 to 622.97 g/mol. The physical appearance is related to the chain length of the fatty acid moiety, the degree of saturation and the number of ester bonds. Thus, mono- and diesters of short-chain fatty acids and unsaturated fatty acids (C6-14 and C16:1, C18:1) as well as diesters of branched fatty acids (C18iso) are liquid, while mono- and diesters of long-chain fatty acids are waxy solids. All category members are non-volatile (vapour pressure: ≤ 0.066 Pa). The octanol/water partition coefficient increases with increasing fatty acid chain length and number of ester bonds, ranging from log Kow = 1.78 (C6 PG monoester component) to log Kow >10 (C12 PG diester component). The water solubility decreases accordingly (624.3 mg/L for C6 PG monoester component to >0.01 mg/L for C18 PG diester component); and

(b) Environmental fate and ecotoxicological properties: Considering the low water solubility and the potential for adsorption to organic soil and sediment particles, the main compartment for environmental distribution is expected to be the soil and sediment. Nevertheless, persistency in these compartments is not expected since the members of the Glycol Esters Category are readily biodegradable. Evaporation into air and the transport through the atmospheric compartment is not expected since the category members are not volatile based on the low vapour pressure. All members of the category are readily biodegradable and did not show any effects on aquatic organisms in acute and chronic tests representing the category members up to the limit of water solubility. Moreover, bioaccumulation is assumed to be low based on metabolism data.

(c) Toxicological properties: The toxicological properties show that all category members have a similar toxicokinetic behaviour (hydrolysis of the ester bond before absorption followed by absorption and metabolism of the breakdown products) and that the constant pattern consists in a lack of potency change of properties across the category, explained by the common metabolic fate of glycol esters independently of the fatty acid chain length and degree of glycol substitution. Thus, no category member showed acute oral, dermal or inhalative toxicity, no skin or eye irritation properties, no skin sensitisation, are of low toxicity after repeated oral exposure and are not mutagenic or clastogenic and have shown no indications for reproduction toxicity and have no effect on intrauterine development.

The available data allows for an accurate hazard and risk assessment of the category and the category concept is applied for the assessment of environmental fate and environmental and human health hazards. Thus, where applicable, environmental and human health effects are predicted from adequate and reliable data for source substance(s) within the group by interpolation to the target substances in the group (read-across approach) applying the group concept in accordance with Annex XI, Item 1.5, of Regulation (EC) No 1907/2006. In particular, for each specific endpoint the source substance(s) structurally closest to the target substance is/are chosen for read-across, with due regard to the requirements of adequacy and reliability of the available data. Structural similarities and similarities in properties and/or activities of the source and target substance are the basis of read-across.

A detailed justification for the grouping of chemicals and read-across is provided in the technical dossier (see IUCLID Section 13).

Data Matrix

Genetic toxicity

CAS #

624-03-3 (a)

627-83-8

91031-31-1 (b)

151661-88-0

1323-39-3

68583-51-7

84988-75-0

853947-59-8

Genetic toxicity (mutagenicity) in bacteria in-vitro

RA: CAS 91031-31-1

RA: CAS 627-83-8

Negative

Negative

Negative

Negative (c)

Negative

Negative

Negative

Genetic toxicity (cytogenicity) in mammalian cells in-vitro

RA: CAS 853947-59-8

RA: CAS 853947-59-8

--

--

--

RA: CAS 853947-59-8

RA: CAS 853947-59-8

Negative

Genetic toxicity (mutagenicity) in mammalian cells in-vitro

RA: CAS 91031-31-1

RA: CAS 91031-31-1

Negative

--

--

RA: CAS 91031-31-1

RA: CAS 91031-31-1

--

Genetic toxicity in vivo

RA: CAS 151661-88-0

RA: CAS 151661-88-0

--

Negative

--

RA: CAS 151661-88-0

RA: CAS 151661-88-0

--

(a) Category members subject to registration are indicated in bold font. Only for these substances a full set of experimental results and/or read-across is given.

(b) Substances not subject to registration are indicated in normal font. Lack of data for a given endpoint is indicated by “--“.

(c) Original data is not available and thus not used for read-across.

Genetic toxicity (mutagenicity) in bacteria in-vitro

CAS 627-83-8

A bacterial gene mutation assay (Ames test) was performed with ethylene distearate following OECD guideline 471 and in compliance with GLP (Wnorowski, 1991). The plate incorporation procedure was performed with Salmonella typhimurium strains TA 100, TA 1535, TA 1537 and TA 98 in the absence and presence of metabolic activation (Aroclor 1254-induced rat liver S9-mix). Two independent experiments were conducted each in triplicates at concentrations from 8 to 5000 µg/plate (vehicle: DMSO). No increase in the number of revertant colonies was noted in any of the bacterial strains, with and without metabolic activation system. No cytotoxicity was observed up to the highest dose tested. The included positive and negative controls showed the expected results, however instead of the solvent control DMSO, water was included as negative control substance. Under the conditions of the study, the test substance did not induce mutations in the bacterial mutation assay in the absence and presence of a metabolic activation system in any of the strains tested.

CAS 68583-51-7

Two bacterial gene mutation assays were performed with Decanoic acid, mixed diesters with octanoic acid and propylene glycol following OECD guideline 471 and in compliance with GLP (Banduhn, 1991; Ebert, 1995). The strains Salmonella typhimurium TA 98, TA 100, TA 1535, TA 1537 and TA 1538 were tested in two independent experiments according to the plate incorporation procedure at concentrations from 8 to 5000 µg/plate (vehicle: suspension medium Tween 80/bidest. water) with and without a metabolic activation system (Aroclor 1254-induced rat liver S9-mix). No increase in the number of revertant colonies was noted in any strain of bacteria tested, with and without a metabolic activation system. No cytotoxicity was observed up to the highest dose tested. The included positive and negative controls showed the expected results and were therefore considered as valid. Under the conditions of this study, the test substance did not induce mutations in the bacterial mutation tests in the absence and presence of a metabolic activation system in any of the strains tested (Banduhn, 1991). A further experiment in the tester strains Salmonella typhimurium TA 1535, TA 1537, TA 98 and TA 100 confirmed the above described results (Ebert, 1995). In concentrations from 50 to 5000 µg/plate with and without a metabolic activation system, no cytotoxicity was apparent and no increase in the number of revertant colonies was observed in any of the strains tested.

Thus, the test substance did not induce mutations in the bacterial mutation assay in the absence and presence of a metabolic activation system in any of the strains tested.

CAS 84988-75-0

A study investigating the genetic toxicity in vitro of Fatty acids, C14-18 and C16-18-unsatd., esters with propylene glycol is available. The study was conducted according to OECD guideline 471 under GLP conditions (Banduhn, 1991). In two independent experiments, the tester strains Salmonella typhimurium TA 98, TA 100, TA 1535, TA 1537 and TA 1538 were tested according to the plate incorporation procedure. Concentrations from 8 to 5000 µg/plate were investigated with and without a metabolic activation system (Aroclor 1254-induced rat liver S9-mix). No increase in the number of revertant colonies was noted in any of the bacterial strains, with and without metabolic activation system. No cytotoxicity was observed up to the highest dose tested. The included positive and negative controls showed the expected results and were therefore considered as valid. Thus, under the conditions of this study, the test substance did not induce mutations in the bacterial mutation tests in the absence and presence of a metabolic activation system in any of the strains tested.

CAS 624-03-3

No studies are available investigating the gene mutation properties of ethane-1,2-diyl palmitate in bacteria. However, there are available data on the category members ethylene distearate (CAS 627-83-8) and Fatty acids, C16-18, esters with ethylene glycol (CAS 91031-31-1). The studies of the category members were considered for assessment and read-across was conducted based on a category and weight of evidence approach.

The gene mutation properties of the category member Fatty acids, C16-18, esters with ethylene glycol were determined according to OECD guideline 471 under GLP conditions (Banduhn, 1991). The tester strains, Salmonella typhimurium TA 98, TA 100, TA 1535, TA 1537 and TA 1538 were used. The main study was performed in triplicates each in two independent experiments according to the plate incorporation procedure at concentrations from 8 to 5000 µg/plate (vehicle: Tween 80; 1:1 (w/w) dilution with water) with and without a metabolic activation system (Aroclor 1254-induced rat liver S9-mix). No increase in the number of revertant colonies was noted in any of the bacterial strains, with and without metabolic activation system. No cytotoxicity was observed up to the highest dose tested. Precipitation was noted at the highest test concentration of 5000 µg/plate. The positive and negative controls showed the expected results and were therefore considered as valid. Under the conditions of this study, the test substance did not induce mutations in the bacterial mutation tests in the absence and presence of a metabolic activation system in any of the strains tested.

One bacterial gene mutation assay was performed with ethylene distearate following OECD guideline 471 and in compliance with GLP. The study of the category member showed no induction of gene mutations in the bacterial mutation test and is discussed under the respective CAS number.

All available data on the category members were consistently negative. Thus, the available data on the category members, do not provide evidence for gene mutation properties of ethane-1,2-diyl palmitate in bacteria.

 

Genetic toxicity (cytogenicity) in mammalian cells in-vitro

CAS 627-83-8, CAS 68583-51-7, CAS 84988-75-0, CAS 624-03-3

Within the Glycol Ester category, one study investigating the cytogenicity in mammalian cells is available. Therefore, the study of the category substance Butylene glycol dicaprylate / dicaprate (CAS 853947-59-8) was considered for assessment and read-across was conducted based on a category approach.

An in vitro mammalian chromosome aberration test was conducted with C8-10, 1,3-Butandiolester in accordance with OECD guideline 473 under GLP conditions (Dechert, 1997). The induction of structural chromosome aberrations was evaluated in vitro in Chinese hamster lung fibroblasts (V79) cells, incubated for 18 and 28 h with and without a metabolic activation system (S9-mix from rats treated with Aroclor 1245). Concentrations of 10-100 µg/mL (18 h incubation) and 80 and 100 µg/mL (28 h incubation) of the test substance in the vehicle ethanol were applied. The solubility limit of the test substance in the vehicle ethanol in the culture medium was determined to be 100 µg/mL. In the first experiment without metabolic activation, the negative controls exhibited a mitotic index of 2.0% only and the experiment was therefore repeated. Thereafter, the negative as well as the positive controls showed the expected results and were within the range of historical control data. The frequency of polyploidy cells with and without metabolic activation was within the expected range (< 10%). In the experiments both with and without metabolic activation, a systematic influence of the test substance was observed, which led to a reduction in the mitotic index. No statistically or biologically significant increase in the incidence of chromosome aberrations was observed.

Therefore, under the conditions of the study, the test substance did not show clastogenic activity in this chromosomal aberration test with and without metabolic activation performed in Chinese hamster lung fibroblasts in vitro.

 

Genetic toxicity (mutagenicity) in mammalian cells in-vitro

CAS 627-83-8, CAS 68583-51-7, CAS 84988-75-0, CAS 624-03-3

Within the Glycol Ester category, one study investigating the gene mutation properties in mammalian cells is available. Therefore, the study of the category member Fatty acids, C16-18, esters with ethylene glycol (CAS 91031-31-1) was considered for assessment and read-across was conducted based on a category approach.

The in vitro mammalian cell gene mutation study of Fatty acids, C16-18, esters with ethylene glycol was carried out according to OECD guideline 476 under GLP conditions (Verspeek-Rip, 2010). Gene mutations in the thymidine kinase locus were investigated in L5178Y mouse lymphoma cells in the presence and absence of a metabolic activation system (Phenobarbital/β-naphtoflavone-induced rat liver S9). In the first experiment, cells were exposed for 3 h to test substance at concentrations of 0.1-333 µg/mL (in DMSO) with and without metabolic activation. Concentrations of the second experiment without metabolic activation for an exposure time of 24 h ranged from 3-175 µg/mL and with metabolic activation (3 h; 12% S9-mix) from 0.1-333 µg/mL. The vehicle and positive controls in the study showed the expected results and were within the range of historical control data. No cytotoxicity was observed up to the precipitating concentration of 100 µg/mL and up to 333 µg/mL, respectively. There was no significant increase in the number of forward mutations at the thymidine kinase locus of L5178Y mouse lymphoma cells treated with the test material, neither in the presence nor in the absence of a metabolic activation system. Under the conditions of the study, Fatty acids, C16-18, esters with ethylene glycol did not show gene mutation activity in this test performed in L5178Y mouse lymphoma cells in vitro.

 

Genetic toxicity in vivo

CAS 627-83-8, CAS 68583-51-7, CAS 84988-75-0, CAS 624-03-3

Within the Glycol Ester category, one study investigating the cytogenetic properties of Fatty acids, C18 and C18 unsatd., epoxidized, ester with ethylene glycol (CAS 151661-88-0) in vivo is available. Therefore, the study was considered for assessment and read-across was conducted based on a category approach.

The in vivo micronucleus assay of Fatty acids, C18 and C18 unsatd., epoxidized, ester with ethylene glycol was carried out according to OECD guideline 474 under GLP conditions (Banduhn, 1990). Based on the results of a preliminary dose range finding study, the test substance diluted in arachis oil was administered at 3000, 4000 and 5000 mg/kg bw as single oral doses to groups of 6 male and female CFW1 mice, observed for 24, 48 and 72 h post-dose. A concurrent negative control with the vehicle alone and a positive control group given cyclophosphamide was included in the study. No mortality and no signs at clinical examinations were reported. The test substance did not induce a statistically significant increase in the number of micronucleated polychromatic erythrocytes in the bone marrow of the animals. The negative and positive controls showed the expected results. Therefore, under the conditions of the study, Fatty acids, C18 and C18 unsatd., epoxidized, ester with ethylene glycol did not induce chromosomal mutations in the bone marrow of mice.

 

Additional data

Three bacterial gene mutation studies are available for the category members Butylene glycol dicaprylate / dicaprate (CAS 853947-59-8), Stearic acid, monoester with propane-1,2-diol (CAS 1323-39-3) and Fatty acids, C18 and C18 unsatd. epoxidized, ester with ethylene glycol (CAS 151661-88-0) all showing negative results.

Conclusion for genetic toxicity

In summary, five studies investigating the genetic mutation in bacteria in-vitro are available within the Glycol Ester category for Ethylene distearate (CAS 627-83-8), Decanoic acid, mixed diesters with octanoic acid and propylene glycol (CAS 68583-51-7), Fatty acids, C14-18 and C16-18-unsatd., esters with propylene glycol Fatty acids (CAS 84988-75-0) and C16-18, esters with ethylene glycol (CAS 91031-31-1), all providing negative results. Furthermore, no cytogenicity in mammalian cells in-vitro (CAS 853947-59-8), no mutagenicity in mammalian cells in-vitro (CAS 151661-88-0) and no Genetic toxicity in-vivo (CAS 91031-31-1) was observed with members of the Glycol Ester category.

Therefore, no properties for genetic toxicity were observed within the Glycol Ester group for any member.

References

Agency for Toxic Substances and Disease Registry (ATSDR) (1997): Toxicological Profile for Propylene Glycol. US Department of Health and Human Services. Atlanta, US.

Agency for Toxic Substances and Disease Registry (ATSDR) (2010): Toxicological Profile for Ethylene Glycol. US Department of Health and Human Services. Atlanta, US.

Gubicza, L., Kabiri-Badr, A., Keoves, E., Belafi-Bako, K. (2000): Large-scale enzymatic production of natural flavour esters in organic solvent with continuous water removal. Journal of Biotechnology 84(2): 193-196.

Heymann, E. (1980): Carboxylesterases and amidases. In: Jakoby, W.B., Bend, J.R. & Caldwell, J., eds., Enzymatic Basis of Detoxication, 2nd Ed., New York: Academic Press, pp. 291-323.Gubicza, L. et al. (2000). Large-scale enzymatic production of natural flavour esters in organic solvent with continuous water removal. Journal of Biotechnology 84(2): 193-196.

International Programme on Chemical Safety (IPCS) (2001): Ethylene Glycol. Poisons Information Monograph. PIM 227.

Lilja, J. et al. (2005). Esterification of propanoic acid with ethanol, 1-propanol and butanol over a heterogeneous fiber catalyst. Chemical Engineering Journal, 115(1-2): 1-12.

Liu, Y. et al. (2006). A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis. Journal of Catalysis 242: 278-286.

Miller, O.N., Bazzano, G. (1965): Propanediol metabolism and its relation to lactic acid -metabolism. Annals of the New York Academy of Sciences 119, 957-973.

Radzi, S.M. et al. (2005). High performance enzymatic synthesis of oleyl oleate using immobilised lipase from Candida antartica. Electronic Journal of Biotechnology 8: 292-298.

Ritchie, A.D. (1927): Lactic acid in fish and crustacean muscle. Journal of Experimental Biology 4, 327-332.

Stryer, L. (1994): Biochemie. 2nd revised reprint, Heidelberg; Berlin; Oxford: Spektrum Akad. Verlag.

Tocher, D.R. (2003): Metabolism and Functions of Lipids and Fatty Acids in Teleost Fish. Reviews in Fisheries Science 11(2), 107-184.

WHO (2002): Ethylene Glycol: Human Health Aspects. Concise International Chemical Assessment Document 45.

Zhao, Z. (2000). Synthesis of butyl propionate using novel aluminophosphate molecular sieve as catalyst. Journal of Molecular Catalysis 154(1-2): 131-135.


Justification for selection of genetic toxicity endpoint
Hazard assessment is conducted by means of read-across based on a category approach. All available in vitro and in vivo genetic toxicity studies were negative. All available studies are adequate and reliable based on the identified similarities in structure and intrinsic properties between source and target substance and overall quality assessment (refer to the endpoint discussion for further details).

Short description of key information:
Negative results in Salmonella typhimurium TA 98, TA 100, TA 1535, TA 1538 and TA 1537, with and without metabolic activation (OECD 471, GLP).
Negative results in mammalian chromosomal aberration test with Chinese hamster lung cells (OECD 473, GLP).
Negative results in mammalian cell gene mutation tests using Chinese hamster ovary cells, with and without metabolic activation (OECD 476, GLP).
Negative results in mammalian erythrocyte micronucleus test in vivo (OECD 474, GLP).

Endpoint Conclusion: No adverse effect observed (negative)

Justification for classification or non-classification

According to Article 13 of Regulation (EC) No. 1907/2006 "General Requirements for Generation of Information on Intrinsic Properties of substances", information on intrinsic properties of substances may be generated by means other than tests e.g. from information from structurally related substances (grouping or read-across), provided that conditions set out in Annex XI are met. Annex XI, "General rules for adaptation of this standard testing regime set out in Annexes VII to X” states that “substances whose physicochemical, toxicological and ecotoxicological properties are likely to be similar or follow a regular pattern as a result of structural similarity may be considered as a group, or ‘category’ of substances. This avoids the need to test every substance for every endpoint". Since the group concept is applied to the members of the Glycol Ester Category, data will be generated from representative reference substance(s) within the category to avoid unnecessary animal testing. Additionally, once the group concept is applied, substances will be classified and labeled on this basis.

Therefore, based on the group concept, all available data on genetic toxicity do not meet the classification criteria according to Regulation (EC) 1272/2008 or Directive 67/548/EEC, and are therefore conclusive but not sufficient for classification.