Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Effects on fertility

Link to relevant study records
Reference
Endpoint:
screening for reproductive / developmental toxicity
Remarks:
based on test type (migrated information)
Type of information:
migrated information: read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: see 'Remark'
Remarks:
Read-across from a study with RL 2. This study was designed similar to guideline OECD 415 and was performed according to GLP guidelines, but was designated mainy to select dose levels for a subsequent definite reproduction study. No histological examination of the reproductive or other organs were performed.
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 415 [One-Generation Reproduction Toxicity Study (before 9 October 2017)]
Deviations:
yes
Remarks:
no histological examinations
Principles of method if other than guideline:
one generation range-finding study similar to guideline OECD 421 and performed according to GLP guidelines. No histological examination of the reproductive or other organs were performed.
GLP compliance:
yes
Limit test:
no
Species:
rat
Strain:
other: Crl:CDBR
Sex:
male/female
Details on test animals or test system and environmental conditions:
TEST ANIMALS
- Source: Charles River Inc., males: Raleigh, NC, USA, females: Stone Ridge, NY, USA
- Age at study initiation: (P) approx. 7 wks
- Weight at study initiation: (P) Males: 221-266 g; Females: 168-201 g
- Fasting period before study:
- Housing: individual, except the mating and post partum periods
- Diet: PMI Certified Rodent Diet Meal 5002 ad libitum
- Water: ad libitum
- Acclimation period: 13 days


ENVIRONMENTAL CONDITIONS
- Temperature (°C): 20-24,4
- Humidity (%): 40-70
- Air changes (per hr): no data
- Photoperiod (hrs dark / hrs light): 12 h/12 h
Route of administration:
oral: feed
Details on exposure:
PREPARATION OF DOSING SOLUTIONS: undiluted test substance used

DIET PREPARATION
- Rate of preparation of diet (frequency): weekly (first 5 weeks), twice weekly (therafter
- Mixing appropriate amounts with (Type of food): basal diet
- Storage temperature of food: room temperature

Details on mating procedure:
- M/F ratio per cage: 1/1
- Length of cohabitation: overnight
- Proof of pregnancy: vaginal plug and/ or sperm in vaginal smear, referred to as day 0 of pregnancy
Analytical verification of doses or concentrations:
yes
Details on analytical verification of doses or concentrations:
All meal samples were within 10% of nominal concentration; stable for at least 4 days at 0.06% concentration, for at least 15 days at higher concentrations, details given in Appendix W
Duration of treatment / exposure:
P1 males and females were both exposed for at least 10 weeks prior to mating, through the mating period. Males were further exposed until their sacrifice, females throughout gestation and lactation until day 28 post partum. F1 pups were exposed from day 28 post partum until their sacrifice (postnatal day 42 (females) to 49 (males)).
Frequency of treatment:
daily, via feed
Remarks:
Doses / Concentrations:
0.06, 0.12, 0.25 and 0.5%
Basis:
nominal in diet
No. of animals per sex per dose:
10
Control animals:
yes, plain diet
Parental animals: Observations and examinations:
CAGE SIDE OBSERVATIONS: Yes
- Time schedule: Cageside observations were performed daily on all P1 adults and after weaning for all F1 offspring, except the days clinical observations were performed.

VIABILITY: Yes
-Tiime schedule: All animals were examined for viability at least twice daily Monday through Friday, and at least once daily on weekends and holidays.

DETAILED CLINICAL OBSERVATIONS: Yes
- Time schedule: A clinical examination was given to each male prior to P1 selection, on the first day of dosing, and at least weekly thereafter until euthanized. Females received a clinical examination prior to P1 selection, on the first day of dosing, and at least weekly thereafter until confirmation of mating, then on GD 0, 7, 14, and 21, and on PPD 0, 4, 7, 14 and 21.


BODY WEIGHT: Yes
- Time schedule for examinations: Body weights were recorded for all females pretest, at initiation of dosing (Day 0), on Days 4 and 7, and weekly until confirmation of mating or the end of the mating period. Body weights were recorded for confirmed-mated females on GDs 0, 7, 14, and 21, on PPDs 0, 4, 7, 14, and 21 and weekly after Postpartum Day 21. After the mating period, body weights were recorded weekly for females not confirmed mated until they were sacrificed. Confirmed-mated females which did not deliver by GD 26 were weighed weekly after GD 26 until sacrificed. Body weights also were recorded on the day of sacrifice for all females.


FOOD CONSUMPTION AND COMPOUND INTAKE (if feeding study):
Food consumption was measured on Days 1, 2, 3, and 7, and then concurrently with body weight after Day 7, except during the mating period and on GD 0 and PPD 0 for the females when food consumption was not measured.
- Compound intake calculated as time-weighted averages from the consumption and body weight gain data: No


OTHER:
- signs of parturition were examined at least twice daily beginning on gestational day (GD) 21. The duration of gestation was calculated and any difficulties occurring at parturition were noted. The date of parturition was recorded as the dam's Postpartum Day 0 (PPD 0).

POSTNATAL EXAMINATION: Yes
Each morning and afternoon during the postnatal period, the litters were checked for dead offspring and unusual conditions, and the dams were examined for viability, nesting, and nursing behavior.
Dead pups were removed from the litter immediately after their discovery. If intact, dead pups were examined externally and internally for anomalies. Dead pups discovered on PND 0 also were examined internally to determine whether they were stillborn.
On PND 0, 1, 4, 7, 14, 21, and 28 the offspring were counted, sexed, and each live pup was weighed. Pups were counted and examined externally on a daily basis during the postnatal period. All animals were weighed on PND 35, 42, and 49 (males only were weighed on PND Day 49).
On PND 4, after counting, weighing, and examining the pups, the size of each litter was adjusted by eliminating extra pups by random selection to yield, as nearly as possible, 4 males and 4 females per litter. Partial adjustment (e.g., 5 males and 3 females) was permitted whenever there were not enough pups to obtain 4 per sex per litter. Litters of eight pups or less were not adjusted.
Culled pups were sacrificed. Culled pups that appeared normal received only an external examination and tissues were not saved. Culled pups that appeared abnormal were subjected to a visceral examination.
The pups from each litter were examined daily for pinna detachment (starting PND 1), hair growth (starting PND 3), righting reflex (starting PND 3), incisor eruption (starting PND 7), and eye opening (starting PND 11). The examinations continued for an individual landmark until the criterion for that landmark was attained. Additionally, beginning on PND 29, all surviving female offspring were examined daily for vaginal opening. Beginning on PND 35 all surviving male offspring were examined daily for preputial separation. The examinations continued until all animals reached criteria.

Oestrous cyclicity (parental animals):
Vaginal smears were performed on each female on their day of sacrifice to determine its stage in the estrous cycle. The stage of the estrous cycle was recorded, but not used for estrous cycle calculations.
Sperm parameters (parental animals):
Samples of sperm from the left distal cauda epididymis (or proximal vas deferens) were collected at necropsy and evaluated for the percentage of progressively motile sperm and sperm morphology. Also, the entire left cauda epididymis was minced in saline to enumerate the total number of sperm (cauda reserves).
Litter observations:
Each morning and afternoon during the postnatal period, the litters were checked for dead offspring and unusual conditions, and the dams were examined for viability, nesting, and nursing behavior.
Dead pups were removed from the litter immediately after their discovery. If intact, dead pups were examined externally and internally for anomalies. Dead pups discovered on PND 0 also were examined internally to determine whether they were stillborn.
On PND 0, 1, 4, 7, 14, 21, and 28 the offspring were counted, sexed, and each live pup was weighed. Pups were counted and examined externally on a daily basis during the postnatal period. All animals were weighed on PND 35, 42, and 49 (males only were weighed on PND Day 49).
On PND 4, after counting, weighing, and examining the pups, the size of each litter was adjusted by eliminating extra pups by random selection to yield, as nearly as possible, 4 males and 4 females per litter. Partial adjustment (e.g., 5 males and 3 females) was permitted whenever there were not enough pups to obtain 4 per sex per litter. Litters of eight pups or less were not adjusted.
Culled pups were sacrificed. Culled pups that appeared normal received only an external examination and tissues were not saved. Culled pups that appeared abnormal were subjected to a visceral examination.
The pups from each litter were examined daily for pinna detachment (starting PND 1), hair growth (starting PND 3), righting reflex (starting PND 3), incisor eruption (starting PND 7), and eye opening (starting PND 11). The examinations continued for an individual landmark until the criterion for that landmark was attained. Additionally, beginning on PND 29, all surviving female offspring were examined daily for vaginal opening. Beginning on PND 35 all surviving male offspring were examined daily for preputial separation. The examinations continued until all animals reached criteria.
Postmortem examinations (parental animals):
Gross necropsies were performed on all adult animals that were found dead. Body weight was recorded on the day of necropsy. The uterus of each female used for mating, but failing to deliver, was examined grossly for evidence of implantations and these data were recorded.
A gross necropsy was performed on all adult animals surviving to termination. Body weights were recorded on the day of necropsy. The uterus of each female was examined grossly for evidence of implantation and the number of implantation sites was recorded.

The following tissues and organs of all males surviving to termination and all females were weighed prior to fixation:
ovaries (individual) uterus
testes (individual) prostate
liver
right epididymis (total and cauda)
seminal vesicles (with coagulating glands and their fluids)

The following organs and tissues of all adults were preserved in 10% neutral buffered formalin:
coagulating gland right epididymis
seminal vesicles prostate
testes* uterus
liver ovaries
*:The right testis was preserved in Bouin's solution. The right testis remained in Bouin's solution for approximately 24 hours. The right testis was then rinsed with tap water and stored in 70 percent Ethyl Alcohol. The left testis was frozen for enumeration of homogenization resistant spermatids.

Abnormal tissues were preserved in 10% neutral buffered formalin at the discretion
of the Study Director or designee for possible future microscopic examination.
Postmortem examinations (offspring):
Intact dead pups or pups sacrificed in moribund condition on PND 0 were examined by fresh visceral dissection. Dead pups and pups sacrificed as moribund after PND 0 were examined externally for anomalies and internally for gross visceral abnormalities. Culled pups (PND 4) with external abnormalities were subjected to a visceral examination at the discretion of the Study Director or his designee.
Statistics:
Group means and standard deviations were calculated.
Reproductive indices:
mean male fertility and mating indices and female fertility, fecundity and gestational indices
Offspring viability indices:
offspring survival
Clinical signs:
no effects observed
Body weight and weight changes:
effects observed, treatment-related
Food consumption and compound intake (if feeding study):
effects observed, treatment-related
Organ weight findings including organ / body weight ratios:
effects observed, treatment-related
Histopathological findings: non-neoplastic:
not examined
Other effects:
effects observed, treatment-related
Reproductive function: oestrous cycle:
not examined
Reproductive function: sperm measures:
no effects observed
Reproductive performance:
no effects observed
BODY WEIGHT AND FOOD CONSUMPTION (PARENTAL ANIMALS)
Significant increases in body weight gain in males of the 0.12 and 0.5% dose groups were considered incidental and unrelated to treatment with the test material (absence of a clear consistent response over the test period).
Statistically significantly decreased mean body weights when compared with controls were observed in the 0.5% females on Gestation Day (GD) 7 (9%) and on GD 21 (11%) and on Postpartum Days (PPD) 4, 7, and 14 (17%, 12%, and 10%, respectively). Also, there was a corresponding statistically significant decrease in mean body weight change for the 0.5% group females at the PPD 0-4 interval (209%). There also was a statistically significantly decreased mean body weight compared with controls in the 0.25% females on PPD 4 (10%).
There also were statistically significant increases in mean body weight change in the 0.25 and 0.5% group females at the PPD 4/7 (470% and 567%, respectively), PPD 14/21 (154% and 235%, respectively), and in the 0.25% females on PPD 0/21 intervals (112%).
There were statistically significant decreases in mean food consumption for the 0.5% group males at Days 1 (2 1%) and 2 (2 1%). There were statistically significant decreases in mean food consumption in the 0.25% group females at Day 1 (30%), Day 3 (18%), and Weeks 1 (13%), 2 (11%), 3 (21%), 4 (13%), and 6 (12%). There also were statistically significant decreases in mean food consumption for the 0.5% group females at Day 1 (47%) and Weeks 1 (15%), 2 (13%), 4 (11%), and 6 (10%). These decreases were considered to be due to reduced palatability of the diet mixtures.
There were no statistically significant differences in food consumption during the gestation period. However, statistically significant decreases in food consumption were noted in the 0.5% group females during the PPD 0/4 (46%), 7/14 (15%), and entire postpartum period (PPD 0-28) (17%).


ORGAN WEIGHTS (PARENTAL ANIMALS)
There were no statistically significant changes in the mean absolute or mean relative organ weights for the reproductive organs weighed during the study. There were statistically significant increases in the mean absolute and mean relative liver weights of the 0.5% males (15% and 21%, respectively) and 0.5% females (21% and 24%, respectively) and the 0.25% females mean absolute and relative liver weights (15% and 14%, respectively). The significance of the increases in the liver weights could not be determined because histopathology was not performed on the tissues.

REPRODUCTIVE PERFORMANCE (PARENTAL ANIMALS):
There was a statistically significant decrease in the mean percent live offspring (6%) and the corresponding increase in the mean percent dead offspring (700%) in the 0.5% dose group.

Dose descriptor:
LOAEL
Effect level:
165 - 500 mg/kg bw/day
Sex:
female
Basis for effect level:
other: decreases in body weight, increased liver weight; 0.25% in diet, calculated by the authors on the basis of food consumption and body weights
Dose descriptor:
NOAEL
Effect level:
79 - 228 mg/kg bw/day
Sex:
female
Basis for effect level:
other: 0.12% in diet, calculated by the authors on the basis of food consumption and body weights
Clinical signs:
no effects observed
Mortality / viability:
mortality observed, treatment-related
Body weight and weight changes:
effects observed, treatment-related
Sexual maturation:
no effects observed
Organ weight findings including organ / body weight ratios:
not examined
Gross pathological findings:
no effects observed
Histopathological findings:
not examined
VIABILITY (OFFSPRING)
There were statistically significant decreases in 0.5% group offspring compared with the control offspring for the live birth index (6.0%), the Day 1 survival index (14%), and the Day 4 survival index (2 1%).

BODY WEIGHT (OFFSPRING)
There were statistically significant decreases in mean offspring body weights in the 0.25% group males and females at PND 0, 1, 4, 7, 35 and 42. There also were statistically significant decreases in mean offspring body weights in the 0.25% group males at PND14, 28, and 49.

SEXUAL MATURATION (OFFSPRING)
There was a statistically significant advance for preputial separation for the 0.06% group males (1.2 days) when compared with the controls. Due to the small size of this advance and the absence of a dose response, this difference was not considered biologically significant. There also was a statistically significant retardation of preputial separation for the 0.5% group males (2.1 days) compared with the control male offspring. In the females, the 0.5% group exhibited a statistically significant retardation (1.8 days) for vaginal patency compared with controls. These two findings are not biologically significant but rather reflect the normal maturation of these animals with the delays due to somewhat smaller body weights.

OTHER FINDINGS (OFFSPRING). DEVELOPMENTAL LANDMARKS
There were statistically significant retardations in the male eye opening for the 0.5% group (0.7 days later), and the male and female pinna detachment in the 0.5% group (1.0 day later each). These findings are not biologically significant but rather reflect the normal maturation of these animals with the delays due to somewhat smaller body weights.
Dose descriptor:
LOAEL
Generation:
F1
Effect level:
0.25 other: % in diet
Sex:
male/female
Basis for effect level:
other: reduced fetal weights, no calculation of body doses stated
Dose descriptor:
NOAEL
Generation:
F1
Effect level:
0.12 other: % in diet
Sex:
male/female
Basis for effect level:
other: no calculation of body doses stated
Reproductive effects observed:
not specified

BODY DOSES BASED ON FOOD CONSUMPTION AND BODY WEIGHTS

DOSE
(%)

WEEK 1
(mg/kg/day)

WEEKS 2-9
(mg/kg/day)

WEEK 10
(mg/kg/day)

Gestation

Postpartum

M

A

L

E
S

0.06

59

33-51

32

Not
Applicable

Not
Applicable

0.12

117

66-101

66

0.25

247

147-215

145

0.5

477

289-435

290

F
E

M A L E S

0.06

57

40-56

40

37-42

57-126

0.12

116

79-112

81

79-86

109-228

0.25

231

168-224

167

165-185

241-500

0.5

450

347-453

347

336-382

311-970

MEAN OFFSPRING BODY WEIGHT - F1 (PREWEANING)


}Group

MALE
PND 0

MALE
PND 1

MALE
PND 4

MALE
PND 7

MALE
PND 14

MALE
PND 21

MALE
PND 28

0%

6.71

7.09

9.54

15.58

32.32

51.18

91.53

0.06%

6.82

7.31

10.13

16.70

34.12

53.06

93.88

0.12%

6.39

6.85

9.01

14.44

30.72

48.88

90.23

0.25%

5.76**h

5.95**h

7.98*h

12.55**h

28.64*h

46.23

81.65**

0.5%

5.66**h

5.73**h

7.67**h

11.07**h

23.31**h

39.18**h

72.63**

Historical
Control

6.35-7.02

6.68-7.49

8.53-11.43

13.64-18.74

28.81-37.09

44.89-62.34

98.34

Group

FEMALE
PND 0

FEMALE
PND 1

FEMALE
PND 4

FEMALE
PND 7

FEMALE
PND 14

FEMALE
PND 21

FEMALE
PND 28

0%

6.36

6.89

9.33

14.72

30.50

47.77

82.46

0.06%

6.51

7.00

9.67

15.35

31.89

49.18

83.84

0.12%

5.92h

6.40

8.78

13.81

28.79

46.18

81.83

0.25%

5.46**h

5.65**h

7.83**h

12.77*h

28.89

45.33

77.09

0.5%

5.65**h

5.65**h

7.55**h

11.10**h

23.47**h

38.59**h

69.34**

Historical
Control

5.96-6.74

6.30-7.16

8.32-11.05

13.33-17.69

27.22-35.89

42.39-61.19

90.68

MEAN OFFSPRING BODY WEIGHT - F1 (POSTWEANING)

{ }Group

MALE
PND 35

MALE
PND 42

MALE
PND 49

0%

147.7

205.8

266.3

0.06%

151.0

211.4

272.4

0.12%

144.3

205.1

266.3

0.25%

128.4**

183.4**

242.1**

0.5%

119.8**

170.9**

227.6**

Group

FEMALE
PND 35

FEMALE
PND 42

FEMALE
PND 49

0%

124.8

158.3

NA

0.06%

126.5

161.4

NA

0.12%

123.1

157.2

NA

0.25%

114.9**

148.6*

NA

0.5%

109.3**

140.9**

NA

NOTE: All weights are in grams

* Mean significantly different from control mean (p0.05)

** Mean significantly different from control mean (p0.01)

NA not applicable

Conclusions:
Under the conditions of this study administration of the test substance resulted in evidence of maternal toxicity and findings in offspring that may have been secondary to maternal toxicity. Maternal toxicity was demonstrated by decreased body weight and food consumption during the gestation and postpartum periods, and increased absolute and relative liver weights in the 0.25% and 0.5% groups (79-228 and 165-500 mg/kg bw and day). Paternal effects were limited to increased absolute and relative liver weights in the 0.5% group. The differences between male and female adults in this study may be due to the somewhat higher dose rates observed in the females, especially during the postpartum period. Coincident with the maternal effects, offspring body weights were decreased in both sexes in the 0.25% and 0.5% groups, and offspring survival was decreased in the 0.5% dose group. There were also some small delays in developmental landmarks in the high dose offspring. These delays are likely secondary to the decreased offspring growth in this group.
There was no evidence of adverse effects on mating behavior, fertility, sperm parameters, or reproductive organ weights in the parental animals. Thus, the test material does not effect fertility at the dose levels tested. There were also no malformations observed in the offspring in this study. There were indications of offspring toxicity that may be related to maternal toxicity in the two highest doses. The apparent NOAEL for both maternal and offspring effects in this study is the 0.12% level.
Executive summary:

In this one-generation range-finding study (performed similar to OECD guideline 415) the test substance was administered to male and female rats in the diet (10 per sex and dose; 0.06, 0.12, 0.25 and 0.5% in diet) for at least ten weeks prior to mating and during the mating period. The dams were exposed during the gestation and postpartum periods, until weaning of the offspring on Postpartum Day (PPD) 28. The parental male animals were sacrificed at the end of the mating period, the females and the offspring after weaning.

Effects in the P-generation:

There were no treatment-related deaths, clinical signs or effects on male or female reproductive organ weights or reproductive parameters. Statistically significant decreases were observed in food consumption of the 0.5% group females at various postnatal timepoints. The body weights of the parental generation were reduced in females of the 0.25% group at PPD 4 as well as in 0.5% females at Gestation Days (GD) 7 and 21 and at PPD 4, 7, and 14. Liver weights were increased in males at 0.5%, in females at 0.25% and above.

Effects in offspring:

Reduced Live Birth Index and survival indices were observed in the 0.5% group. Postnatal offspring body weights of both sexes of the 0.25% and 0.5% groups were reduced compared with the controls.

No treatment-related clinical signs were noted for the offspring. A postnatal developmental delay was obvious in the 0.5% dose group offspring in form of delayed onset of eye opening in male offspring, pinna detachment in both sexes, retardation of preputial separation and vaginal patency. These delays were considered to be treatment-related and secondary to reduced offspring body weight.

The NOAEL for reproductive toxicity was 0.5% (highest tested dose, 289-477 mg/kg bw/day in males, 336-970 mg/kg bw/d in females for P generation). The LOAEL for systemic parental (female) and offspring toxicity was 0.25% (165 -500 mg/kg/bw/day for P generation), the NOAEL was 0.12% (79 -228 mg/kg bw/day for P generation) (Exxon, 1998).

This study, performed similar to OECD guideline 415, was judged to be reliable (RL2) and selected as key study.

Effect on fertility: via oral route
Endpoint conclusion:
no adverse effect observed
Dose descriptor:
NOAEL
381.48 mg/kg bw/day
Study duration:
subchronic
Species:
rat
Quality of whole database:
The key study was conducted according to modern regulatory standards and were adequately reported.
Effect on fertility: via inhalation route
Endpoint conclusion:
no study available
Effect on fertility: via dermal route
Endpoint conclusion:
no study available
Additional information

For the dissociation products of the substance, data from a prenatal developmental toxicity study and data from a one-generation study are available; therefore a screening study for reproductive/developmental toxicity does not need to be conducted.

In the one-generation range-finding study (performed similar to OECD guideline 415) the test substance 3,5,5-trimethylhexanoic acid was administered to male and female rats in the diet (10 per sex and dose; 0.06, 0.12, 0.25 and 0.5% in diet) for at least ten weeks prior to mating and during the mating period. The dams were exposed during the gestation and postpartum periods, until weaning of the offspring on Postpartum Day (PPD) 28. The parental male animals were sacrificed at the end of the mating period, the females and the offspring after weaning.

There were no treatment-related deaths, clinical signs or effects on male or female reproductive organ weights or reproductive parameters. The NOAEL for reproductive toxicity was 0.5% (highest tested dose, 289-477 mg/kg bw/day in males, 336-970 mg/kg bw/d in females for P generation.

In addition there was no evidence for effects on reproductive organs from the sub-acute repeated dose toxicity study with 3,5,5-trimethylhexanoic acid, assessed by organ weights and/or histopathology of reproductive organs (testis, ovaries, uterus, vagina, epididymides, prostate gland and seminal vesicles).


Short description of key information:
No data on fertility are available for hexanoic acid, 3,5,5-trimethyl-, tin (2+)salt (2:1). Data from a one-generation study are available for the dissociation product 3,5,5-trimethylhexanoic acid.

Justification for selection of Effect on fertility via oral route:
The study was designed similar to guideline OECD 415 and was performed according to GLP guidelines. RL 2 was assigned, because no histological examination of the reproductive or other organs were performed. A converting factor of 1.32, was used reflecting molecular weight differences between 3,5,5-trimethylhexanoic acid and the substance under investigation, resulting in a NOAEL of 381.48 mg/kg bw/d.

Effects on developmental toxicity

Description of key information
No data on developmental toxicity are available for hexanoic acid, 3,5,5-trimethyl-, tin (2+)salt (2:1).  Data from a one-generation study are available for the dissociation product 3,5,5-trimethylhexanoic acid, in addition data from two developmental toxicity studies with tin chloride were evaluated. 
Effect on developmental toxicity: via oral route
Endpoint conclusion:
adverse effect observed
Dose descriptor:
NOAEL
104 mg/kg bw/day
Study duration:
subchronic
Species:
rat
Quality of whole database:
The one-generation study was conducted according to modern regulatory standards and were adequately reported.
Effect on developmental toxicity: via inhalation route
Endpoint conclusion:
no study available
Effect on developmental toxicity: via dermal route
Endpoint conclusion:
no study available
Additional information

For assessment of developmental toxicity of hexanoic acid, 3,5,5-trimethyl-, tin (2+)salt (2:1) data from the dissociation products 3,5,5-trimethylhexanoic acid and tin chloride were evaluated.

In the one-generation range-finding study (performed similar to OECD guideline 415) the 3,5,5-trimethylhexanoic acid was administered to male and female rats in the diet (10 per sex and dose; 0.06, 0.12, 0.25 and 0.5% in diet) for at least ten weeks prior to mating and during the mating period. The dams were exposed during the gestation and postpartum periods, until weaning of the offspring on Postpartum Day (PPD) 28. The parental male animals were sacrificed at the end of the mating period, the females and the offspring after weaning.

Effects in the P-generation:

There were no treatment-related deaths, clinical signs or effects on male or female reproductive organ weights or reproductive parameters. Statistically significant decreases were observed in food consumption of the 0.5% group females at various postnatal time points. The body weights of the parental generation were reduced in females of the 0.25% group at PPD 4 as well as in 0.5% females at Gestation Days (GD) 7 and 21 and at PPD 4, 7, and 14. Liver weights were increased in males at 0.5%, in females at 0.25% and above.

Effects in offspring:

Reduced Live Birth Index and survival indices were observed in the 0.5% group. Postnatal offspring body weights of both sexes of the 0.25% and 0.5% groups were reduced compared with the controls.

No treatment-related clinical signs were noted for the offspring. A postnatal developmental delay was obvious in the 0.5% dose group offspring in form of delayed onset of eye opening in male offspring, pinna detachment in both sexes, retardation of preputial separation and vaginal patency. These delays were considered to be treatment-related and secondary to reduced offspring body weight.

The NOAEL for reproductive toxicity was 0.5% (highest tested dose, 289-477 mg/kg bw/day in males, 336-970 mg/kg bw/d in females for P generation). The LOAEL for systemic parental (female) and offspring toxicity was 0.25% (165 -500 mg/kg/bw/day for P generation), the NOAEL was 0.12% (79 -228 mg/kg bw/day for P generation) (Exxon, 1998).

 

For tin chloride data from two FDA developmental toxicity studies in rabbit and rat were evaluated. Virgin, adult, female albino rats were mated and administered the test substance on days 6 through 15 of gestation. Females were dosed by gavage with a sham control, positive control, 0.5, 2.3, 11.0 and 50.0 mg/kg bw/d. On Day 20 all dams were subjected to Caesarean section under surgical anesthesia.

In the second study Virgin, adult, Dutch-belted rabbits were artificially inseminated and administered the test substance on days 6 through 18 of gestation. Females were dosed by gavage with a sham control, positive control, 0.42, 1.90, 8.90 and 41.4 mg/kg. On Day 29 all does were subjected to Caesarean section under surgical anesthesia.

In both studies tin chloride had no clearly discernible effect on nidation or on maternal or fetal survival. The number of abnormalities seen in either soft or skeletal tissues of the test groups did not differ from the number occurring spontaneously in the untreated control.

The following NOAELs for maternal toxicity, fetotoxicity and teratogenicity were established > 41.4 mg/kg bw/d for rabbits and > 50.0 mg/kg bw/d for rats, which were the highest tested doses.

The following is cited from the WHO report tin and inorganic tin compounds: “In a multigeneration study, CPB: WU rats were given tin in the diet at 0, 200, 400, or 800 mg/kg for three generations. To simulate the “form of the tin likely to be found in canned food,” tin (II) chloride was allowed to react in aqueous medium with the casein content of the diet. The iron content was increased for the F2 generation onwards. Tin did not affect growth of the parents, fertility, numbers of offspring per litter, or birth weight (Sinkeldam et al., 1979).” [……] “Within this multigeneration study, a teratogenicity study was carried out using 20 F2b females per dose level. On visceral and skeletal examination, there was no increase in the incidence of fetal malformations (Sinkeldam et al., 1979).”

In essence there is no hint on developmental toxicity effects for tin chloride up to 800 mg/kg bw/d.

Conclusion

For tin chloride data from two developmental toxicity studies are available, however the tested doses were very low. From a reported multi-generation study there is no evidence for developmental toxicity up to 800 mg/kg bw/d. For the 3,5,5-trimethylhexanoic acid a NOAEL of 0.12 % in diet was determined for systemic parental and offspring toxicity. The lower boundary of 79 mg/kg bw/d was considered to be the appropriate NOAEL . For further assessment and derivation of DNELs the value was extrapolated using a converting factor of 1.32, reflecting molecular weight differences between 3,5,5-trimethylhexanoic acid and the substance under investigation, resulting in a NOAEL of 104 mg/kg bw/d for hexanoic acid, 3,5,5-trimethyl-, tin (2+) salt (2:1).

 

Read-across justification:

Hexanoic acid, 3,5,5-trimethyl-, tin (2+) salt (2:1) is a tin-salt of an organic acid and is known to dissociate in aqueous medium. This assumption is sustained by a similar toxicological profile for hexanoic acid, 3,5,5-trimethyl-, tin (2+) salt (2:1) and 3,5,5 - trimethylhexanonic acid.

 Hexanoic acid, 3,5,5-trimethyl-, tin (2+) salt (2:1) as well as 3,5,5 - trimethylhexanoic acid are both classified for acute oral toxicity in GHS category IV.

If the tin 2+species from a dissociated salt is introduced to aerated water, it will primarily be present as the poorly soluble Sn(OH)2 species, or will be oxidized to become insoluble Sn(IV)O2.

In conclusion the hydrolysis products tin2 + and the anion of the 3,5,5 - trimethylhexanoic acid can be regarded as surrogate substances for hexanoic acid, 3,5,5-trimethyl-, tin (2+) salt (2:1). Intrinsic properties of the dissociated ions are assumed to be independent of the source. Therefore it is reasonable to discuss toxicological effects of the ions separately. The 3,5,5 - trimethylhexanoic acid and for the tin 2+ moiety, tin dichloride, as a tin salt with a nontoxic counterion are considered appropriate for assessment of hexanoic acid, 3,5,5-trimethyl-, tin (2+) salt (2:1) and read-across is justified without restrictions.

 


Justification for selection of Effect on developmental toxicity: via oral route:
NOAEL was derived from a one-generation study with 3,5,5-trimethylhexanoic acid, designed similar to guideline OECD 415 and performed according to GLP guidelines. RL 2 was assigned, because no histological examination of the reproductive or other organs were performed. A converting factor of 1.32, was used reflecting molecular weight differences between 3,5,5-trimethylhexanoic acid and the substance under investigation, resulting in a NOAEL of 104 mg/kg bw/d.
Furthermore data from two developmental toxicity studies with tin chloride were available, however conducted with very low test substance concentrations.

Justification for classification or non-classification

The observed effects in the one-generation toxicity study with 3,5,5 - trimethylhexanoic acid occurred only in the presence of maternal toxicity. Reduced Live Birth Index and survival indices were observed in the high dose group. A postnatal developmental delay of offspring was considered to be treatment-related and secondary to reduced offspring body weight.

No treatment-related clinical signs were noted for the offspring.The NOAEL for reproductive toxicity was determined at the highest tested dose for P generation. The NOAEL for systemic parental and offspring toxicity was determined at 0.12 % in diet.

From the evaluated studies and WHO evaluation (2005) there was no evidence for a reproductive or developmental toxicity effect of tin chloride.

In conclusion according to Directive 67/548/EEC as well as GHS Regulation EC No 1272/2008 there is no need for classification of hexanoic acid, 3,5,5-trimethyl-, tin (2+)salt (2:1) for reproductive and developmental toxicity.

Additional information