Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
experimental study
Adequacy of study:
key study
Study period:
03 January 2018 to 06 March 2018
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2018
Report date:
2018

Materials and methods

Test guideline
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Deviations:
no
GLP compliance:
yes
Type of assay:
bacterial reverse mutation assay

Test material

Constituent 1
Reference substance name:
Benzyltriphenylphosphonium, salt with 4,4'- [2,2,2- trifluoro-1- (trifluoromethyl)ethylidene]bis[phenol] (1:1)
Cas Number:
75768-65-9
IUPAC Name:
Benzyltriphenylphosphonium, salt with 4,4'- [2,2,2- trifluoro-1- (trifluoromethyl)ethylidene]bis[phenol] (1:1)
Test material form:
solid
Details on test material:
Purity: 98 %
Specific details on test material used for the study:
Purity: 98 %

Method

Target gene:
The Salmonella strains contain mutations in the histidine operon, thereby imposing a requirement for histidine in the growth medium. These strains contain the deep rough (rfa) mutation, which deletes the polysaccharide side chain from the lipopolysaccharides of the bacterial cell surface. This increases cell permeability of larger substances. The other mutation is a deletion of the uvrB gene, which codes for a protein of the DNA nucleotide excision repair system, resulting in an increased sensitivity in detecting many mutagens. This deletion also includes the nitrate reductase (chi) and biotin (bio) genes (bacteria require biotin for growth). Tester strains TA98 and TA100 contain the R-factor plasmid, pKM101. These strains are reverted by a number of mutagens that are detected weakly or not at all with the non-R-factor parent strains. pKM101 increases chemical and spontaneous mutagenesis by enhancing an error-prone DNA repair system, which is normally present in these organisms. The tester strain Escherichia coli WP2 uvrA carries the defect in one of the genes for tryptophan biosynthesis. Tryptophan-independent mutants (revertants) can arise either by a base change at the site of the original alteration or by a base change elsewhere in the chromosome so that the original defect is suppressed. This second possibility can occur in several different ways so that the system seems capable of detecting all types of mutagens, which substitute one base for another. Additionally, the strain is deficient in the DNA nucleotide excision repair system.
Species / strain
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
Metabolic activation:
with and without
Metabolic activation system:
Aroclor 1254-induced rat liver S9
Test concentrations with justification for top dose:
In the preliminary toxicity assay, the dose levels tested were 6.67, 10.0, 33.3, 66.7, 100, 333, 667, 1000, 3333 and 5000 μg per plate. The top dose was the recommended top dose per the guideline.Based on the results in the preliminary toxicity assay, the dose levels tested in the mutagenicity assay were 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μg per plate
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: DMSO for the test substance. All positive controls were diluted in DMSO except for sodium azide, which was diluted in sterile water. - Justification for choice of solvent/vehicle: DMSO was the vehicle of choice based on the solubility of the test substance and compatibility with the target cells.
Controls
Negative solvent / vehicle controls:
yes
Positive controls:
yes
Positive control substance:
9-aminoacridine
2-nitrofluorene
sodium azide
methylmethanesulfonate
other: 2-aminoanthracene
Details on test system and experimental conditions:
METHOD OF APPLICATION: in agar (plate incorporation)DURATION- Exposure duration: 48 to 72 hoursNUMBER OF REPLICATIONS: 1 in the preliminary toxicity assay; 3 in the mutagenicity assayNUMBER OF CELLS EVALUATED: >/= 0.3 x 10^8 cells/plateDETERMINATION OF CYTOTOXICITY- Method: other: Counting of revertant colony numbers and evaluation of the condition of the bacterial background lawn.
Evaluation criteria:
For the test substance to be evaluated positive, it must cause a dose-related increase in the mean revertants per plate of at least one tester strain over a minimum of two increasing concentrations of test substance as specified below:Strains TA1535 and TA1537Data sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 3.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.Strains TA98, TA100 and WP2 uvrAData sets were judged positive if the increase in mean revertants at the peak of the dose response was equal to or greater than 2.0-times the mean vehicle control value and above the corresponding acceptable vehicle control range.An equivocal response is a biologically relevant increase in a revertant count that partially meets the criteria for evaluation as positive. This could be a dose-responsive increase that does not achieve the respective threshold cited above or a non-dose responsive increase that is equal to or greater than the respective threshold cited. A response was evaluated as negative if it was neither positive nor equivocal.
Statistics:
According to the test guidelines, the biological relevance of the results is the criterion for the interpretation of the results, and a statistical evaluation of the results is not regarded as necessary.

Results and discussion

Test results
Key result
Species / strain:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Remarks:
Preliminary toxicity assay: Toxicity was observed beginning at 333, 667, 1000 or 3333 μg per plate with all conditions. Mutagenicity Assay: Toxicity was observed beginning at 150, 500, 1500 or at 5000 μg per plate with all conditions
Vehicle controls validity:
valid
Positive controls validity:
valid
Remarks on result:
other: all strains/cell types tested
Remarks:
Migrated from field 'Test system'.

Applicant's summary and conclusion

Conclusions:
All criteria for a valid study were met as described in the protocol. The results of the Bacterial Reverse Mutation Assay indicate that, under the conditions of this study, Bisphenol AF Salt did not cause a positive mutagenic response with any of the tester strains in either the presence or absence of Aroclor-induced rat liver S9. The study was concluded to be negative without conducting a confirmatory (independent repeat) assay because the results were clearly negative; hence, no further testing was warranted.
Executive summary:

All criteria for a valid study were met as described in the protocol. The test substance, Bisphenol AF Salt, was tested to evaluate its mutagenic potential by measuring its ability to induce reverse mutations at selected loci of several strains of Salmonella typhimurium and at the tryptophan locus of Escherichia coli strain WP2 uvrA in the presence and absence of an exogenous metabolic activation system. Dimethyl sulfoxide (DMSO) was used as the vehicle.

In the preliminary toxicity assay, the dose levels tested were 6.67, 10.0, 33.3, 66.7, 100, 333, 667, 1000, 3333 and 5000 μg per plate. Precipitate was observed beginning at 3333 μg per plate with all conditions. Toxicity was observed beginning at 333, 667, 1000 or 3333 μg per plate with all conditions. Based upon these results, the maximum dose tested in the mutagenicity assay was 5000 μg per plate.

In the mutagenicity assay, the dose levels tested were 1.50, 5.00, 15.0, 50.0, 150, 500, 1500 and 5000 μg per plate. Precipitate was observed beginning at 1500 or at 5000 μg per plate with all conditions. Toxicity was observed beginning at 150, 500, 1500 or at 5000 μg per plate with all conditions. No positive mutagenic responses were observed with any of the tester strains in either the presence or absence of S9 activation.

These results indicate Bisphenol AF Salt was negative for the ability to induce reverse mutations at selected loci of several strains of Salmonella typhimurium and at the tryptophan locus of Escherichia coli strain WP2 uvrA in the presence and absence of an exogenous metabolic activation system.