Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 610-130-5 | CAS number: 436083-99-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Repeated dose toxicity: inhalation
Administrative data
- Endpoint:
- sub-chronic toxicity: inhalation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: GLP Compliant
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 001
- Report date:
- 2001
Materials and methods
Test guideline
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- other: ECB/TM/16/97
- Deviations:
- yes
- Remarks:
- only highest dose used, more endpoints were studied and animals were followed up for a longer period
- Principles of method if other than guideline:
- only highest dose used, more endpoints were studied and animals were followed up for a longer period (12 months rather than 90 days)
- GLP compliance:
- yes (incl. QA statement)
- Limit test:
- no
Test material
- Reference substance name:
- amporphous glass fibre formed from the melting and fiberisation of predominately slilcon dioxide, calcium oxide, magnesium oxide
- EC Number:
- 610-130-5
- Cas Number:
- 436083-99-7
- Molecular formula:
- Amorphous glass consisting of SinO(3n-1)2(n-1) Polymeric anions ionically bonded to Ca2+ and Mg2+ cations or other alkaline earth cations
- IUPAC Name:
- amporphous glass fibre formed from the melting and fiberisation of predominately slilcon dioxide, calcium oxide, magnesium oxide
- Details on test material:
- exposure was to a test article prepared from commercial high purity AES wool, prepared by milling, grinding and size separation
- Name of test material (as cited in study report): Fibre A
- Substance type: milled white fibre
- Physical state: Solid
- Other: test article sizing: detailed in table 1 in the additional materials section as the activity of the fibres is determined to a large part on their size
Constituent 1
Test animals
- Species:
- rat
- Strain:
- Fischer 344
- Sex:
- male
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Source: Charles River Deutschland
- Age at study initiation: 9-10weeks
- Weight at study initiation: 110-120g
- Housing: 2 rats per polycarbonate cage
- Diet (e.g. ad libitum): Commerce chow Atromin N 1324 special prepared ad libitum
- Water (e.g. ad libitum): ad libitum
- Acclimation period: Two weeks before tube training
ENVIRONMENTAL CONDITIONS
- Temperature (°C): 22+/-2
- Humidity (%): 55 +/- 15
- Air changes (per hr): Not recorded; varied with temperature and humidity controls
- Photoperiod (hrs dark / hrs light): 12h light dark cycle
IN-LIFE DATES: August 15th 1997 (initiation) exposure completed December 14th 1997
Administration / exposure
- Route of administration:
- inhalation: dust
- Type of inhalation exposure:
- nose only
- Vehicle:
- other: unchanged (no vehicle)
- Remarks on MMAD:
- MMAD / GSD: Fibre size not calculated as MMAD, size distribution of aerosol 50% fibres were less than 10.4 microns long, 50% less than 1.2 micron diameter 50% had aerodynamic diameter of less than 4.0 microns.
- Details on inhalation exposure:
- GENERATION OF TEST ATMOSPHERE / CHAMBER DESCRIPTION
- Exposure apparatus: flow past system as described in Bernstein DM, Thevenaz P, Fleissner H, Anderson R,Hesterberg TW, Mast R 1995 Evaluation of the oncogenic potential of man-made vitreous fibers: the inhalation model Ann Occup Hyg 1995; 39(5):661-72 except that the aerosol was generated using a pneumatic disperser, static on the aerosol was neutralised using a Nickel 63 radiation source
- Method of holding animals in test chamber: Battelle Tubes
- Air flow rate: 1 litre/min
- Method of particle size determination: samples of the aerosol were collected on membrane filters , these were weighed for gravimetric analysis and fibres counted by SEM, except for Amosite positive control TEM was used.
- Samples taken from breathing zone: yes - Analytical verification of doses or concentrations:
- yes
- Details on analytical verification of doses or concentrations:
- Samples of the aerosol were collected on membrane filters, these were weighed for gravimetric analysis and fibres counted by SEM, except for Amosite positive control where TEM was used.
644 ± 176 WHO fibres/ml
152 ± 48 fibres longer than 20µm /ml
Mass concentration 71 ± 17.6 mg/m3
Further details given below - Duration of treatment / exposure:
- total 89 days
- Frequency of treatment:
- 6h/day, 5days/week
Doses / concentrations
- Dose / conc.:
- 70 mg/m³ air (analytical)
- Remarks:
- Doses / Concentrations:
644 ± 176 WHO fibres/ml 153 ± 48 fibres longer than 20µm /ml
Mass concentration 70 ± 17.6 mg/m3
Basis:
analytical conc.
- No. of animals per sex per dose:
- 57 male
- Control animals:
- yes, concurrent no treatment
- Details on study design:
- The EU guideline ECB/TM/16(97) rev. 1 was largely followed except that some animals were allowed to survive for one year after exposure for 90 days to enable any pathology to resolve or develop. Cell proliferation in the terminal bronchioles and in the lung parenchyma was measured by the BrDU method. The dose of fibres in the lung was estimated by counting the fibres in the ashed tissue. RCF fibres were counted by SEM and amosite by TEM Non fibrous aluminosilicate glass content was measured using chemical analysis for the aluminium content of the ash, The dust content of the lung associated lymph nodes was also measured. The integrity of macrophage clearance from the lungs was estimated by thoracic radioactivity measurements after a brief inhalation of tracer particles.
- Dose selection rationale: to ensure comparable dosing of long fibres with positive control
- Rationale for animal assignment (if not random): Randomly assigned by body weight using Datatox system so that mean weight of groups was within 1% of overall mean - Positive control:
- amosite asbestos long fibre dose 756 ± 133 WHO fibres/ml
146 ± 28 fibres longer than 20µm /ml
Mass concentration 6.5 ± 0.9 mg/m3
Examinations
- Observations and examinations performed and frequency:
- CAGE SIDE OBSERVATIONS: Yes
- Time schedule: daily
DETAILED CLINICAL OBSERVATIONS: Yes
- Time schedule: weekly
BODY WEIGHT: Yes
- Time schedule for examinations: Up to three months Individual body weights weekly to nearest 0.1g and once every two weeks for the duration of study
FOOD CONSUMPTION:
- Food consumption for each animal determined and mean daily diet consumption calculated as g food/kg body weight/day: No
FOOD EFFICIENCY:
- Body weight gain in kg/food consumption in kg per unit time X 100 calculated as time-weighted averages from the consumption and body weight gain data: No
WATER CONSUMPTION: No
OPHTHALMOSCOPIC EXAMINATION: No
HAEMATOLOGY: No
CLINICAL CHEMISTRY: Yes
on lung lavage fluid
URINALYSIS: No
NEUROBEHAVIOURAL EXAMINATION: No
OTHER: cellular content of lung lavage fluid determined on sacrifice - Sacrifice and pathology:
- GROSS PATHOLOGY: No
HISTOPATHOLOGY: Yes (see table) - Other examinations:
- clinical chemistry and cellular content, on lung lavage fluid
Fibre and particle content of lungs and lung associated lymph nodes - Statistics:
- Differences between groups were considered statistically significant at p <0.05. Data were analysed using analysis variance. if the group means differed significantly by the analysis of variance the means of the treated groups were compared with the means of the control groups based on the Dunnett's test. The analysis of the data was done with SAS software package (version SAS Institute, Cery, NC USA, Release 6.12 on DEC Alpha 2000 4/233).
Results and discussion
Results of examinations
- Clinical signs:
- no effects observed
- Mortality:
- no mortality observed
- Body weight and weight changes:
- no effects observed
- Food consumption and compound intake (if feeding study):
- not examined
- Food efficiency:
- not examined
- Water consumption and compound intake (if drinking water study):
- not examined
- Ophthalmological findings:
- not examined
- Haematological findings:
- not examined
- Clinical biochemistry findings:
- no effects observed
- Description (incidence and severity):
- in lung lavage fluid
- Urinalysis findings:
- not examined
- Behaviour (functional findings):
- not examined
- Immunological findings:
- not examined
- Organ weight findings including organ / body weight ratios:
- effects observed, treatment-related
- Description (incidence and severity):
- small increase in lung weight
- Gross pathological findings:
- no effects observed
- Neuropathological findings:
- not examined
- Histopathological findings: non-neoplastic:
- effects observed, treatment-related
- Histopathological findings: neoplastic:
- no effects observed
- Other effects:
- not specified
- Details on results:
- CLINICAL SIGNS AND MORTALITY
- no clinical abnormalities were observed and no animals died during the study period
BODY WEIGHT AND WEIGHT GAIN
- There was no effect of AES on body weight but exposure to non-fibrous aluminosilicate particles and amosite asbestos resulted in a significant (P<1% - Dunnett’s test) reduction in body weight and a significant increase in lung weight. The body weight reduction with amosite occurred on days 53-91.
CLINICAL CHEMISTRY: LUNG LAVAGE FLUID,
- no effects on LDH or beta-Glucuronidase, small increase in total protein initially but had recovered after 1.5 months.
ORGAN WEIGHTS
- AES caused a small increase in lung weight. AES, unlike the other three test articles did not cause a significant increase in lung associated lymph node weights.
GROSS PATHOLOGY
- none observed
HISTOPATHOLOGY: NON-NEOPLASTIC
Macroscopic findings - None detected
Microscopic findings
All test materials showed very slight to slight alveolar and interstitial deposits of fibre or particle laden macrophages. This declined by 12 month in the AES exposed group. A summary of fibrosis scores is reported table 9. All other effects were slight or very slight and more intense in RCF and Amosite asbestos.
- Mean Wagner fibrosis grade 2.2 after 4 days and 3.0 after 12 months
OTHER FINDINGS
- Cell proliferation in the terminal airways and lung parenchyma was studied using BrdU assay, no lasting effect was observed. The proportion of dividing cells increased after all exposure but for RCF and amosite asbestos this effect was greater in the terminal airway than in the lung parenchyma. The effect of AES was only significant immediately after exposure but the effect of amosite persisted for the entire 12 month period of study,
Effect levels
- Key result
- Dose descriptor:
- NOAEC
- Effect level:
- > 70 mg/m³ air (analytical)
- Based on:
- test mat.
- Sex:
- male
- Basis for effect level:
- body weight and weight gain
- clinical signs
- food consumption and compound intake
- mortality
Target system / organ toxicity
- Key result
- Critical effects observed:
- no
- Lowest effective dose / conc.:
- 70 mg/m³ air (analytical)
- System:
- respiratory system: lower respiratory tract
- Organ:
- lungs
Any other information on results incl. tables
Table 3 Terminal Body weights (SD) male rats(g)
Control |
Amosite asbestos |
RCF |
AES |
Non fibrous aluminosilicate |
259.0 (17.4) |
235.1 (11.8) |
259.1 (22.6) |
259.3 (8.5) |
250.0 (8.7) |
Table 4 Terminal lung weights
Control |
Amosite asbestos |
RCF |
AES |
Non fibrous aluminosilicate |
1.049 (0.080) |
1.214 (0.031) |
1.188 (0.087) |
1.135 (0.13) |
1.425 (0.096) |
Table 5 Clearance of test substance from the lung Mean (90%CL) days
Material |
HALF TIME IN DAYS |
|||
Number of fibres |
Number of WHO fibres |
Number of fibres >20 microns long |
Mass |
|
RCF
|
338 (286-389) |
328 (269-388) |
145 (120-170) |
145 (120-170) |
AES |
47 (25-68) |
44 (27-62) |
15 (12-19) |
44 (29-58) |
Amosite
|
402 (270-536) |
502 (298-706) |
561 (174-948) |
444 (295-594) |
Non fibrous aluminosilicate glass |
|
|
|
91 (79-102 |
Half times calculated according to ECB/TM/26 counts less than 5% of initial burden discounted.
Table 6 Lung contents of particle and fibres (LALN = lung associated lymph nodes)
Fibre |
Sacrifice [Months] |
WHO Fibres [106/lung] |
Fibres (L>20μm) [106/lung] |
Calculated mass [mg] |
||||
Fibres |
Particles |
|||||||
Lung |
LALN |
Lung |
LALN |
Lung |
LALN |
Lung |
||
AES |
0.1 |
38.2 |
0.009 |
1.760 |
0.000 |
0.609 |
0.000 |
3.152 |
0.5 |
19.0 |
0.011 |
0.499 |
0.000 |
0.289 |
0.000 |
1.039 |
|
1.5 |
13.9 |
0.018 |
0.160 |
0.000 |
0.224 |
0.000 |
1.350 |
|
3 |
9.8 |
0.041 |
0.042 |
0.000 |
0.133 |
0.001 |
0.546 |
|
6 |
9.2 |
0.063 |
0.010 |
0.000 |
0.124 |
0.001 |
0.543 |
|
12 |
2.5 |
0.063 |
0.001 |
0.000 |
0.041 |
0.001 |
0.096 |
|
RCF |
0.1 |
38.3 |
0.229 |
7.90 |
0.004 |
1.207 |
0.006 |
4.541 |
0.5 |
36.4 |
0.167 |
7.00 |
0.003 |
1.161 |
0.004 |
4.052 |
|
1.5 |
41.1 |
0.532 |
7.92 |
0.012 |
1.175 |
0.014 |
4.386 |
|
3 |
32.2 |
0.637 |
6.17 |
0.018 |
0.813 |
0.016 |
3.474 |
|
6 |
22.8 |
0.612 |
3.15 |
0.013 |
0.494 |
0.012 |
2.199 |
|
12 |
18.2 |
1.800 |
1.55 |
0.007 |
0.222 |
0.026 |
1.714 |
|
Amosite |
0.1 |
145.7 |
0.076 |
14.74 |
0.005 |
1.053 |
0.001 |
- |
0.5 |
133.2 |
0.093 |
14.19 |
0.015 |
0.869 |
0.002 |
- |
|
1.5 |
139.2 |
0.082 |
17.35 |
0.008 |
1.012 |
0.001 |
- |
|
3 |
110.1 |
0.206 |
12.66 |
0.005 |
0.846 |
0.002 |
- |
|
6 |
93.2 |
0.135 |
12.13 |
0.004 |
0.700 |
0.002 |
- |
|
12 |
88.8 |
0.149 |
10.82 |
0.000 |
0.619 |
0.001 |
- |
|
Non fibrous aluminosilicate |
0.1 |
|
|
|
|
|
|
4.60 |
0.5 |
|
|
|
|
|
|
3.93 |
|
1.5 |
|
|
|
|
|
|
4.05 |
|
3 |
|
|
|
|
|
|
2.96 |
|
6 |
|
|
|
|
|
|
1.00 |
|
12 |
|
|
|
|
|
|
0.33 |
* For the NF Particulate the mass was determined by chemical analysis
Table 7 Clearance of Tracer particles from alveolar region of lung
Materials |
Half time of alveolar tracer clearance (95 CL) days
|
|
5 days post exposure |
6 months post exposure |
|
Control
|
56 (54-58) |
66 (60-73) |
RCF
|
435 (243-594) |
467 (314-908) |
AES |
88 (79-98) |
86 (79-95)
|
Nonfibrous aluminosilicate |
1202 (778-2641) |
infinite |
Amosite asbestos
|
125 (112-140) |
81 (75-89) |
All clearance times significantly slower than control at p<0.001
RCF, amosite and AES and the non-fibrous aluminosilicate glass deposited in the lung at concentrations that overloaded lung clearance. But the effect of the non-fibrous materials is much more extreme.
Table 8 Cell Proliferation index
Location |
Material |
Proliferation index (%) at two times after exposure ceased |
|||
At end of exposure |
12 months after end of exposure |
||||
Mean |
SD |
Mean |
SD |
||
Terminal bronchiolus |
Control |
1.20 |
0.54 |
0,77 |
0.17 |
AES |
2.14 |
0.66 |
0.81 |
0.18 |
|
RCF |
7.02 |
3.74 |
0.93 |
0.07 |
|
Amosite |
12.75 |
2.56 |
3.47 |
1.17 |
|
NFP |
4.78 |
1.79 |
0,94 |
0.23 |
|
Lung parenchyma |
control |
1.64 |
0.65 |
2.65 |
0.97 |
AES |
2.19 |
1.01 |
2.60 |
0.25 |
|
RCF |
4.11 |
1.53 |
4.36 |
0.16 |
|
Amosite |
4.64 |
1.17 |
4.26 |
0.79 |
|
NFP |
4.47 |
2.18 |
3.53 |
1.17 |
The effects of amosite in the terminal airway are significantly different (p<0.001) throughout the study.
Table 9 Mean Wagner Fibrosis Grades and grade involving at least 4% of lung parenchyma at 4 days and 12 months post exposure
Material |
4 days |
12 months |
||
|
Mean Wagner grade |
Grade 4% of total parenchyma |
Mean Wagner grade |
Grade 4% of total parenchyma |
Control
|
1 |
- |
1.33 |
- |
RCF
|
3.0 |
- |
3.75 |
0.72 |
AES
|
2.2 |
- |
3.0 |
- |
Amosite
|
4.0 |
2.16 |
4.0 |
2.57 |
Non fibrous aluminosiliicate
|
3.0 |
- |
4.0 |
2.41 |
Table 10: Biochemical parameters in lung lavage fluid, normalised to control = 1.
|
Months\after end of exposure |
LDH |
BETA glucuronidase |
Total protein |
control |
ALLTIMES |
1.0 |
1.0 |
1.0 |
AES |
0 |
1.31 |
1.08 |
1.43 |
1.5 |
1.35 |
1.13 |
1.15 |
|
3 |
1 |
0.92 |
1.10 |
|
6 |
1 |
1.08 |
1.07 |
|
12 |
0.85 |
0.83 |
0.99 |
|
RCF |
0 |
3.58 |
3.92 |
2.90 |
1.5 |
2.95 |
2.08 |
1.95 |
|
3 |
2.55 |
2.92 |
2.05 |
|
6 |
1.9 |
1.92 |
1.67 |
|
12 |
1.69 |
1.38 |
1.52 |
|
Amosite |
0 |
2.62 |
2.93 |
1.90 |
1.5 |
2.27 |
1.54 |
1.45 |
|
3 |
1.93 |
2 |
1.72 |
|
6 |
1.81 |
1.75 |
1.70 |
|
12 |
1.69 |
1.38 |
1.63 |
|
NFP |
0 |
10.35 |
24.25 |
5.70 |
1.5 |
10.69 |
14.29 |
4.37 |
|
3 |
8.93 |
23.83 |
4.09 |
|
6 |
6.45 |
15.00 |
3.09 |
|
12 |
3.46 |
3.5 |
2.18 |
Figure in bold are significantly different from control p<0.01
Applicant's summary and conclusion
- Conclusions:
- Low biopersistence fibres such as the substance under discussion produce no significant pathological response when inhaled at very high concentrations.
- Executive summary:
Following this study, a standard protocol for the 90 day study was adopted by the ECB. The EU guideline ECB/TM/16(97) rev. 1 was largely followed except that some animals were allowed to survive for one year after exposure for 90 days to enable any pathology to resolve or develop. Cell proliferation in the terminal bronchioles and in the lung parenchyma was measured by the BrDU method. The dose of fibres in the lung was estimated by counting the fibres in the ashed tissue. RCF fibres were counted by SEM and amosite by TEM Non fibrous aluminosilicate glass content was measured using chemical analysis for the aluminium content of the ash, The dust content of the lung associated lymph nodes was also measured. The integrity of macrophage clearance from the lungs was estimated by thoracic radioactivity measurements after a brief inhalation of tracer particles. RCF, amosite and AES and the non-fibrous aluminosilicate glass deposited in the lung at concentrations that overloaded lung clearance. But the effect of the non-fibrous materials is much more extreme, it is dubious if the lung clearance data represents a toxic response rather than a biological response to lung overload.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.