Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 209-062-5 | CAS number: 554-13-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Repeated dose toxicity: oral
Administrative data
- Endpoint:
- repeated dose toxicity: oral
- Remarks:
- other: statement on chronic exposure
- Type of information:
- experimental study
- Adequacy of study:
- weight of evidence
- Study period:
- 1993, 2002, 2007, 2012
- Reliability:
- 1 (reliable without restriction)
Data source
Referenceopen allclose all
- Reference Type:
- other: expert statement
- Title:
- Unnamed
- Year:
- 2 012
- Reference Type:
- review article or handbook
- Title:
- Unnamed
- Year:
- 2 002
- Report date:
- 2002
- Reference Type:
- review article or handbook
- Title:
- Manual of clinical psychopharmacology
- Author:
- Schatzberg, A.F.; Cole, O.J., DeBattista, C.
- Year:
- 2 007
- Bibliographic source:
- American Psychiatric Publishing. ISBN 158562317
- Reference Type:
- review article or handbook
- Title:
- Toxicology: the basic science of poisons
- Author:
- Casarett, L.; Klassen, C.D; Curtis, D.
- Year:
- 2 007
- Bibliographic source:
- ISBN-10: 0-07-147051-4
- Reference Type:
- review article or handbook
- Title:
- Physiological Parameters on Laboratory animals and humans
- Author:
- Davis, B; Morris, T.
- Year:
- 1 993
- Bibliographic source:
- Pharm. res. 10: 1093
Materials and methods
Test guideline
- Qualifier:
- no guideline followed
- Principles of method if other than guideline:
- Expert statement
- GLP compliance:
- not specified
Test material
- Reference substance name:
- Lithium carbonate
- EC Number:
- 209-062-5
- EC Name:
- Lithium carbonate
- Cas Number:
- 554-13-2
- Molecular formula:
- CH2O3.2Li
- IUPAC Name:
- dilithium carbonate
Constituent 1
Results and discussion
Effect levels
- Key result
- Dose descriptor:
- NOAEL
- Effect level:
- 6.43 mg/kg bw/day (nominal)
- Based on:
- act. ingr.
- Sex:
- male/female
- Basis for effect level:
- other: In humans.
Target system / organ toxicity
- Critical effects observed:
- not specified
Applicant's summary and conclusion
- Conclusions:
- Based on human data obtained from routine long-term treatment of bipolar disorder with lithium, a NOAEL for long-term oral toxicity of 6.43 mg lithium carbonate/kg bw/ day was calculated.
- Executive summary:
In humans, lithium/ lithium carbonate has been used for decades in psychiatric therapy for the treatment of bipolar disorder. In case of long-term treatment, the recommended dose is 450 to 900 mg/day lithium carbonate and corresponding to a desired sustained therapeutic serum concentration of 0.5 to 1.0 mmol lithium/L. Based on experience with long-term application e.g. lithium carbonate for therapy in humans, there is no evidence that lithium is of concern with respect to repeated oral toxicity at medical doses as the ones indicated above.
The effect level (NOAEL) determined for lithium carbonate for repeated dose toxicity by the oral route is based on human data and can be calculated in two ways that complete one another:
One option is based on the therapeutic serum concentrations of 0.5 to 1.0 mmol lithium/L and the extracellular fluid (ECF) volume. Lithium has a large volume of distribution of 0.6 - 0.9 L/kg (42 L – 63 L for a 70 kg adult). It is distributed throughout the body water both extra and intracellularly. Lithium shifts into the intracellular compartments of cells because of its large volume of distribution. Although in long-term use, the intracellular concentration increases, the intracellular concentration is not reflected by the plasma level which measures only the extracellular fluid concentration. Therefore, a desired concentration of 1 mmol/L of lithium is expected to be sustained and reflected in the extracellular fluid (ECF) only and not in the intracellular fluid. Thus, the volume considered is of the ECF only which comprises of plasma, interstitial fluid (spaces between cells) and transcellular fluid (lymph, cerebrospinal fluid, synovial fluid, serous fluid, gastrointestinal secretions) and is typically 15 L (reported in different references to be between 14 – 19 L (for 70 kg adult)). Based on this data the derived NOAEL (considering a lithium concentration of 1mmol/L and an ECF volume of 15 L) is 1.5 mg lithium/kg bw/day equivalent to 7.98 mg lithium carbonate/kg bw/day. This NOAEL value can be considered as a conservative value as it is based on an bioavailable dose in humans after absorption and on a smaller volume than its actual distribution volume.
Another way to calculate NOAEL oral for lithium carbonate is based as well on data taken from the routine long-term treatment of bipolar disorder. Instead of calculating the NOAEL from the therapeutic serum concentration of lithium, the lithium carbonate NOAEL oral can be calculated from the administered oral dose for long-term treatment of bipolar disorder as detailed above: 450 to 900 mg lithium carbonate/day (corresponding to the desired sustained concentrations of 0.5 -1 mmole lithium/L in blood/serum). When dividing the oral doses 450 to 900 mg lithium carbonate/day to 70 kg, the following values are obtained respectively: 6.43 to 12.86 mg lithium carbonate/ kg bw/day or when dividing to 60 kg the following values are obtained respectively: 7.5 to 15 mg lithium carbonate/kg bw/day, representing the optional NOAEL values for lithium carbonate for the oral route.
In both ways of calculation, the values obtained are in same order of magnitude and similar to one another. As a worst–case value, a NOAEL repeated dose toxicity oral of 6.43 mg/kg bw/day was chosen. Further, this value could be used as a starting value for route-to-route extrapolation in calculation of the repeated dose toxicity for the dermal and inhalation routes.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.