Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 233-666-8 | CAS number: 10294-66-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Potassium thiosulfate dissociates into thiosulfate anions and potassium cations in environmental solutions.
Potassium is an essential macronutrient in aquatic and terrestrial ecosystems. Dissolved potassium occurs in solution as dissociated K+ ions. Although K is an abundant element, its mobility in soils, sediments and suspended matter is limited since it is readily incorporated into clay lattices and it is adsorbed more strongly than Na+ to the surfaces of clay minerals and organic matter (Salminen, 2005). A European median log Kp value of 3.99 L/kg is derived for sediment-water partitioning of potassium.
Thiosulfate anions are unstable under environmentally relevant conditions and become part of the natural sulfur cycle. Microorganisms control the redox state of sulfur, capable of oxidation or reduction depending on microbial species and environmental conditions. Thiosulfates are readily oxidized to sulfate under aerated conditions and ultimately reduced to sulfide under anoxic conditions (e.g. Lindsay, 1979, Chemical equilibria in soils. Chichester, UK: John Wiley & Sons., Zopfiet al., 2004, Findlay and Kamyshny, 2017, Lee et al. 2007, Barbosa-Jefferson et al. 1998). Regarding the partitioning of sulfur in European soils, data are available from a study by Sheppard et al. (2011) based on data from five different soil types, i.e. clay till, clay gyttia, glacial clay, cultivated peat and wetland peat (n=25), yielding a median logKp(solids-water in soil) of 1.64 L/kg.
Since sulfur exists in streamwater predominantly as the free sulfate anion (Salminen et al. 2005), concentrations of sulfate in streamwater and sulfur in sediment concentrations are applied to examine the respective partitioning. Based on the FOREGS dataset (Salminen et al. 2005), sulfate concentrations of European stream waters are typically below 55 mg S/L (95thP = 55 mg S/L, 50thP = 5.6 mg S/L ) whereas sulfur concentrations of sediments are typically below 3,000 mg/kg (95thP = 2,817 mg S/kg, 50thP = 508 mg S/kg). The corresponding log sediment/water partition coefficients range from 0.11 to 4.20 with 5th and 95th percentiles of 0.99 and 3.07, respectively (Kd values range from 1.28 L/kg to 15,728.31 L/kg). A European median log Kp(solids-water in sediment) of 2.02 is derived for sulfur.In addition, data is available on marine sulfur partitioning from a reliable, non-guideline study (Sheppard et al., 2011), yielding a sediment-water partition coefficient log Kp(solids-water in sediment) for sulfur of 1.58 L/kg. Results are however based on limited sample size (n=2) and data should therefore be treated with caution.
In soils, sulfur occurs in organic and inorganic forms with the respective ratio depending on soil type and depth. Organic sulfur predominantly occurs in litter in the form of sulfuric acid esters with C–O–SO3 bonds and compounds containing C–S bonds. Sulfuric esters are choline sulfate, phenol sulfates, and polysaccharide sulfates, are of microbial origin and readily available to plants, because they are more easily mineralized compared to C–S compounds that include amino acids such as methionine and cysteine, and sulfolipides. Carbon bound sulfur origins from leaf litter and dead roots and is less mobile and less available to plants and microorganisms because of the strong C-S bond. Depending on moisture and aeration status, different inorganic sulfur forms exist is soil. Elementary sulfur and sulfides are rarely found in well-drained soils because of rapid oxidization to sulfate. In waterlogged soils, reduction to sulfides may take place with subsequent formation of solid-phase minerals and metal sulfides of very low bioavailability/solubility, including FeS, ZnS, PbS and CdS (Lindsay, 1979, Finster et al., 1998). Iron sulfides apparently cover soil particles as dark films composed of pyrite (FeS).
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.