Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Endpoint:
in vitro gene mutation study in bacteria
Type of information:
experimental study
Adequacy of study:
key study
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2018
Report date:
2018

Materials and methods

Test guideline
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
GLP compliance:
yes (incl. QA statement)
Type of assay:
bacterial reverse mutation assay

Test material

Constituent 1
Chemical structure
Reference substance name:
Acetoin
EC Number:
208-174-1
EC Name:
Acetoin
Cas Number:
513-86-0
Molecular formula:
C4H8O2
IUPAC Name:
3-hydroxybutan-2-one
Test material form:
liquid
Remarks:
a colourless liquid

Method

Target gene:
All Salmonella typhimurium strains were obtained from TRINOVA BioChem GmbH (batch: TA97a: 5033D, TA98: 5136D, TA100: 5141D, TA102: 5145D, TA1535: 5138D) and were stored as lyophilizates in the refrigerator at 2-8 °C.
Species / strainopen allclose all
Species / strain / cell type:
S. typhimurium TA 97
Remarks:
TA97a
Species / strain / cell type:
S. typhimurium TA 98
Species / strain / cell type:
S. typhimurium TA 100
Species / strain / cell type:
S. typhimurium TA 102
Species / strain / cell type:
S. typhimurium TA 1535
Metabolic activation:
with and without
Metabolic activation system:
S9 mix
Test concentrations with justification for top dose:
The following nominal concentrations were prepared for the first experiment:
5 µL/plate, 1.5 µL/plate, 0.5 µL/plate, 0.15 µL/plate and 0.05 µL/plate

The following nominal concentrations were prepared for the second experiment:
5 µL/plate, 2.5 µL/plate, 1.25 µL/plate, 0.63 µL/plate, 0.31 µL/plate and 0.16 µL/plate
Vehicle / solvent:
ddH2O was used as solvent to dissolve the test substance.
Controls
Untreated negative controls:
yes
Remarks:
ddH2O and DMSO were used
Positive controls:
yes
Positive control substance:
sodium azide
benzo(a)pyrene
other: 2-aminoantracene
Details on test system and experimental conditions:
All vessels used are made of glass or sterilizable plastic. They were sterilized before use by autoclaving.
The following vessels were used:
• Schott-bottles, glass vials, and culture flasks for solutions and media
• Plastic petri plates
• test tubes for top-agar-bacteria-substance mix
Eight hours before the start of each experiment, one vial permanent culture of each strain was taken from the deep freezer and an aliquot was put into a culture flask containing nutrient broth. After incubation for eight hours at 37 ±1 °C, the cultures were used in the experiment. During the test, the cultures were stored at room temperature as to prevent changes in the titre.
Evaluation criteria:
The colonies were counted visually and the numbers were recorded. A validated spread-sheet software (Microsoft Excel®) was used to calculate mean values and standard devia-tions of each treatment, solvent control and positive control.
The mean values and standard deviations of each threefold determination was calculated as well as the increase factor f(l) of revertant induction (mean revertants divided by mean spontaneous revertants) of the test item solutions and the positive controls. Additionally, the absolute number of revertants (Rev. Abs.) (mean revertantslessmean spontaneous revertants) was given.
A substance is considered to have mutagenic potential, if a reproducible increase of revertant colonies per plate exceeding an increase factor of 2 in at least one strain can be observed. A concentration-related increase over the range tested is also taken as a sign of mutagenic activity.

Results and discussion

Test resultsopen allclose all
Species / strain:
S. typhimurium TA 97
Remarks:
TA 97a
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Species / strain:
S. typhimurium TA 98
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Species / strain:
S. typhimurium TA 102
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Species / strain:
S. typhimurium TA 1535
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid

Any other information on results incl. tables

The test item Acetoin showed no increase in the number of revertants in all bacteria strainsin both experiments.

All negative and nearly all strain-specific positive control values were within the laboratory historical control data ranges indicating that the test conditions were adequate and that the metabolic activation system functioned properly.

Applicant's summary and conclusion

Conclusions:
Based on the results of this study it is concluded that Acetoin is not mutagenic in the Salmonella typhimurium strains TA97a, TA98, TA100, TA102 and TA1535 in the absence and presence of metabolic activation under the experimental conditions in this study.