Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

No key genetic toxicity data with the target substance is available. A read across evaluation was developed with LABS Na as supporting substance. LABS Na was demonstrated to be negative in 3 in vitro mutagenicity and clastogenicity tests: a bacterial mutagenicity study (Ames test), a chromosome aberration test, and mammalian cell gene mutation test.

Link to relevant study records

Referenceopen allclose all

Endpoint:
in vitro gene mutation study in mammalian cells
Type of information:
experimental study
Adequacy of study:
key study
Study period:
May 16, 1995-June 30, 1995
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: Comparable to guideline study.
Qualifier:
equivalent or similar to guideline
Guideline:
OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
GLP compliance:
yes (incl. QA statement)
Type of assay:
mammalian cell gene mutation assay
Specific details on test material used for the study:
- Name of test material (as cited in study report): MARLON A 350
- Physical state: viscous, yellowish liquid
- Analytical purity: 49.7-49.9 % MARLON A
- Lot/batch No.: 95/14
- Stability under test conditions: < 1 yr
- Storage condition of test material: dry and cool in closed container
Species / strain / cell type:
Chinese hamster Ovary (CHO)
Metabolic activation:
with and without
Metabolic activation system:
S9 from aroclor 1254 induced rat liver
Test concentrations with justification for top dose:
0, 0.6, 1, 1.8, 3, 6 ug/ml without S9
0, 6, 10, 18, 30, 60 ug/ml with S9
Vehicle / solvent:
None
Untreated negative controls:
yes
Negative solvent / vehicle controls:
no
True negative controls:
yes
Remarks:
H0 medium
Positive controls:
yes
Positive control substance:
other: ethyl methane sulfonate; 3-(20-)methylcholanthrene
Details on test system and experimental conditions:
METHOD OF APPLICATION: in medium


DURATION
- Preincubation period: 1 week
- Exposure duration: 4 hrs
- Expression time (cells in growth medium): 6 days at 37 degree C for cloning efficiency study, 9 days for mutation assay


STAIN (for cytogenetic assays): Giemsa


NUMBER OF REPLICATIONS: 2


Evaluation criteria:
A test substance was considered mutagenic if a statistically significant dose-related increase in mutant frequency was found in concentrations with greater than 20% survival rate. The mean mutant frequency must also be significantly above the maximum spontaneous mutant frequency.
Statistics:
Statistical significance was determined by the t-test.
Species / strain:
Chinese hamster Ovary (CHO)
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Remarks:
preliminary test showed cytotoxicity at >= 50 ug/ml without S9, and >= 100 ug/ml with S9.
Vehicle controls validity:
not examined
Untreated negative controls validity:
valid
Positive controls validity:
valid
Additional information on results:
COMPARISON WITH HISTORICAL CONTROL DATA: In both the studies with and without S9, the mutant frequencies in the treated groups were statistically significantly higher than in the concurrent negative controls. However, the mutant frequencies in the treated groups were not significantly increased when compared to historical negative controls. There was also no dose-response relationship. The increased mutant frequency in treated groups was therefore not considered to be biologically significant.


Remarks on result:
other: all strains/cell types tested
Remarks:
Migrated from field 'Test system'.

Results of Test 1 ¿ Without S9 Mix            

Concentration (ug/ml)

Absolute cloning efficiency (%)

Mutant frequency ( x 106)

0

82

3 ± 2

0.6

86

7 ± 1

1

85

3 ± 2

1.8

78

5 ± 2

3

86

1 ± 1

6

83

0 ± 1

EMS

83

277 ± 17

Results of Test 1 ¿ With S9 Mix     

Concentration (ug/ml)

Absolute cloning efficiency (%)

Mutant frequency ( x 106)

0

90

2 ± 1

6

88

1 ± 1

10

84

9 ± 4

18

78

5 ± 3

30

89

3 ± 2

60

89

7 ± 2

MCA

81

91 ± 9

Results of Test 2 ¿ Without S9 Mix

Concentration (ug/ml)

Absolute cloning efficiency (%)

Mutant frequency ( x 106)

0

96

1 ± 1

0.6

92

2 ± 3

1

95

1 ± 1

1.8

93

5 ± 2

3

90

2 ± 1

6

91

6 ± 6

EMS

90

309 ± 20

Results of Test 2 ¿ With S9 Mix     

Concentration (ug/ml)

Absolute cloning efficiency (%)

Mutant frequency ( x 106)

0

90

2 ± 1

6

92

7 ± 3

10

88

9 ± 2

18

94

2 ± 1

30

93

2 ± 2

60

90

5 ± 1

MCA

95

89 ± 6

Conclusions:
The test substance is not mutagenic in either the presence or absence of metabolic activation.
Executive summary:

This study examined the potential of the test substance to cause mutations in mammalian cells. Chinese Hamster Ovary (CHO) cells were exposed to concentrations of 0, 0.6, 1, 1.8, 3, and 6 ug/ml without S9, and 0, 6, 10, 18, 30, and 60 ug/ml with S9. The cells were then examined for cytogenicity and mutation frequency. Ethyl methane sulfonate and 3-(20-)methylcholanthrene were used as positive control substances. Preliminary tests show the test substance was cytogenic at concentrations of 50 ug/ml or greater with metabolic activation, and 100 ug/ml or above without metabolic activation. There was no biologically significant increase in mutation frequency in the treated groups. The test substance is considered not mutagenic to CHO cells both in the presence and absence of S9.

Endpoint:
in vitro gene mutation study in bacteria
Type of information:
experimental study
Adequacy of study:
key study
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study
Qualifier:
according to guideline
Guideline:
EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
Principles of method if other than guideline:
Directive 84/449/EEC, B.14 Mutagenicity (Salmonella typhimurium - reverse mutation assay)" 1984; equivalent to OECD 471
GLP compliance:
yes
Type of assay:
bacterial reverse mutation assay
Specific details on test material used for the study:
Marlon A 390 (CAS #68411-30-3) Sodium salts of C10-13 alkyl benzenesulphonic acid, average alkyl chain length = C11.6; activity 91.3%
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Details on mammalian cell type (if applicable):
also TA 1538
Metabolic activation:
with and without
Metabolic activation system:
Arochlor-induced S9 fraction
Test concentrations with justification for top dose:
8, 40, 200, 1000 and 5000 ug/plate
Vehicle / solvent:
Water solution at 50 g/L
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
Remarks:
water
True negative controls:
yes
Positive controls:
yes
Remarks:
aminoanthracene
Positive control substance:
other: nitrofluorene, sodium azide and aminoacridine
Species / strain:
S. typhimurium TA 1535, TA 1537, TA 98 and TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Remarks:
with and without activation
Cytotoxicity / choice of top concentrations:
cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Additional information on results:
TA 1538 also tested negative. During the pre-incubation test, signs of toxicity were noted at concentrations as low as 125 ug/plate. No precipitation of the product was observed at any concentration tested.
Conclusions:
LAS is not mutagenic in the Ames test.
Executive summary:

A bacterial mutagenicity study (Ames test) was conducted on LAS and was found to be negative for mutagenicity.

Endpoint:
in vitro cytogenicity / chromosome aberration study in mammalian cells
Type of information:
experimental study
Adequacy of study:
key study
Study period:
May 25, 1995-November 23, 1995
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
other: GLP study done according to OECD guidelines. However, this study does not adequately address the results obtained at mildly cytotoxic concentrations.
Qualifier:
according to guideline
Guideline:
OECD Guideline 473 (In Vitro Mammalian Chromosome Aberration Test)
GLP compliance:
yes (incl. QA statement)
Type of assay:
in vitro mammalian chromosome aberration test
Specific details on test material used for the study:
- Name of test material (as cited in study report): MARLON A 350
- Physical state: yellow liquid
- Analytical purity: 50% MARLON A 350, 50% water
- Lot/batch No.: 95/14
- Storage condition of test material: dark at ambient temperature
Species / strain / cell type:
Chinese hamster Ovary (CHO)
Metabolic activation:
with and without
Metabolic activation system:
S9 from Aroclor 1254 induced rat liver
Test concentrations with justification for top dose:
All concentrations in micrograms/ml

Test 1 with S9: 0.32, 0.63, 1.25, 2.5, 5, 10, 20, 39, 78
Test 1 without S9: 1.25, 2.5, 5, 10, 20, 39, 58,78, 156

Test 2 with S9: 2.5, 5, 10, 20, 26, 33, 39
Test 2 without S9: 20, 39, 58, 78, 130, 156

An additional test was done with S9 at the following dose levels:
2.5, 5, 7.5, 10, 15, 20, 25, and 30 ug/ml
Vehicle / solvent:
None
Untreated negative controls:
yes
Negative solvent / vehicle controls:
no
True negative controls:
no
Positive controls:
yes
Positive control substance:
other: methyl methanesulphonate, cyclophosphamide
Details on test system and experimental conditions:
METHOD OF APPLICATION: in medium


DURATION
- Exposure duration: 6 hrs with S9, 22 hrs without S9
- Expression time (cells in growth medium): 16-40 hrs with S9, 40 hrs without S9
- Selection time (if incubation with a selection agent): 2 hrs
- Fixation time (start of exposure up to fixation or harvest of cells): 24-48 hrs


SELECTION AGENT (mutation assays): Colcemid

NUMBER OF REPLICATIONS: 3


NUMBER OF CELLS EVALUATED: 100 metaphases


DETERMINATION OF CYTOTOXICITY
- Method: number of cells per culture


OTHER EXAMINATIONS:
- Determination of polyploidy: yes
- Determination of endoreplication: yes
Evaluation criteria:
A dosage was considered toxic if cell count was less then 60% of cell cultures. A test substance was considered clastogenic if a single dose caused the percentage of aberrant cells to be consistently greater than the 99% confidence limits of negative controls and there was also an increase at another dose level.
Statistics:
95% and 99% confidence limits
Species / strain:
Chinese hamster Ovary (CHO)
Metabolic activation:
with and without
Genotoxicity:
positive
Cytotoxicity / choice of top concentrations:
cytotoxicity
Remarks:
>= 15 microgram/ml with S9, >=58 microgram/ml without S9
Vehicle controls validity:
not examined
Untreated negative controls validity:
valid
Positive controls validity:
valid
Additional information on results:
In the absence of S9, only one culture (Test 2, 24 hr harvest, 20 ug/ml) showed a suspicious result. This single result was considered sporadic, as other cultures at this concentration, or at higher concentrations did not show a positive response. In Test 1, in the absence of S9, cytoxicity was seen at 78 micrograms/ml and above. In Test 2, in the absence of S9, cytoxicity was seen at concentrations of 58 micrograms/ml and above.

In Test 1, in the presence of S9, no positive results were seen at concentrations of up to 20 micrograms/ml. Metaphases could not be analyzed due to severe cytotoxicity at the 39 and 78 microgram/ml concentrations. In Test 2, in the presence of S9, one of the cultures at the 5 microgram/ml concentration gave a suspicious result, and both cultures at the 10 microgram/ml concentrations gave positive responses. Mild cytotoxity was also seen at the 10 microgram/ml concentration. At concentrations at and above 20 micrograms/ml, metaphases could not be analyzed due to severe cytotoxicity. No positive results were seen in the Test 2, 48 hr harvest cultures grown in the presence of S9, though moderate cytotoxicity was seen in one of the 20 microgram/ml cultures, and severe cytotoxicity was seen in all cultures above this concentration.

A third test was done in the presence of S9, which showed positive results at the 15 micrograms/ml concentration. However, this concentration was also moderately cytotoxic with only 26% of cells survival. However, due to the low survival of cells, these results are not definitive for determining clastogenicity. Higher concentrations were completely cytotoxic. An additional assessment was then performed at 10 micrograms/ml in the presence of S9, with negative results.

Remarks on result:
other: all strains/cell types tested
Remarks:
Migrated from field 'Test system'.

Abbreviations used in tables:

T - Toxicity evident from morphological changes

TT- Toxicity evident from reduced cell count (<60% of vehicle)

TTT- Too toxic for metaphase assessment

Concentration (micrograms/ml)

Aberration Frequency (lesions/cell)

Aberrant Cell Frequency (% Including Gaps)

Aberrant Cell Frequency (% Excluding Gaps)

Cytotoxicity

Ham¿s F10 medium

0.01

1

0

Nil

Ham¿s F10 medium

0.02

1

1

Nil

0.32

-

-

-

Nil

0.32

-

-

-

Nil

0.63

-

-

-

Nil

0.63

-

-

-

Nil

1.25

-

-

-

Nil

1.25

-

-

-

Nil

2.5

0.01

1

0

Nil

2.5

0.00

0

0

Nil

5

0.00

0

0

Nil

5

0.05

5

0

Nil

10

0.01

1

0

Nil

10

0.01

1

0

Nil

20

0.00

0

0

Nil

20

0.00

0

0

Nil

39

-

-

-

TTT

39

-

-

-

TTT

78

-

-

-

TTT

78

-

-

-

TTT

Cyclophosphamide (20 micrograms/ml)

0.14

8

4

-

Cyclophosphamide

(30 micrograms/ml)

0.06

4

4

-

Cyclophosphamide

(40 micrograms/ml)

0.33

20

19

-

Test 1 ¿ Without S9 Mix, 24 hr Harvest

Concentration (micrograms/ml)

Aberration Frequency (lesions/cell)

Aberrant Cell Frequency (% Including Gaps)

Aberrant Cell Frequency (% Excluding Gaps)

Cytotoxicity

Ham¿s F10 medium

0.00

0

0

Nil

Ham¿s F10 medium

0.00

0

0

Nil

1.25

-

-

-

Nil

1.25

-

-

-

Nil

2.5

-

-

-

Nil

2.5

-

-

-

Nil

5

-

-

-

Nil

5

-

-

-

Nil

10

-

-

-

Nil

10

-

-

-

Nil

20

-

-

-

Nil

20

-

-

-

Nil

39

0.01

1

0

Nil

39

0.00

0

0

Nil

58

0.01

1

0

Nil

58

0.00

0

0

Nil

78

0.00

0

0

T

78

0.00

0

0

T

156

-

-

-

TTT

156

-

-

-

TTT

Methyl methane-sulphonate

(10 micrograms/ml)

0.03

3

1

-

Cyclophosphamide

(20 micrograms/ml)

0.16

14

10

-

Test 2 ¿ With S9 Mix, 24 hr Harvest

Concentration (micrograms/ml)

Aberration Frequency (lesions/cell)

Aberrant Cell Frequency (% Including Gaps)

Aberrant Cell Frequency (% Excluding Gaps)

Cytotoxicity

Ham¿s F-10 medium

0.01

1

0

Nil

Ham¿s F-10 medium

0.02

2

1

Nil

2.5

0.07

2

1

Nil

2.5

0.04

3

1

Nil

5

0.04

3

2

Nil

5

0.06

6

4

Nil

10

0.12

8

6

T

10

0.19

13

5

T

20

-

-

-

TTT

20

-

-

-

TTT

26

-

-

-

TTT

26

-

-

-

TTT

33

-

-

-

TTT

33

-

-

-

TTT

39

-

-

-

TTT

39

-

-

-

TTT

Cyclophosphamide

(40 micrograms/ml)

0.38

20

17

-

Cyclophosphamide

(50 micrograms/ml)

0.31

18

11

-

Test 2 ¿ With S9 Mix, 48 hr Harvest

Concentration (micrograms/ml)

Aberration Frequency (lesions/cell)

Aberrant Cell Frequency (% Including Gaps)

Aberrant Cell Frequency (% Excluding Gaps)

Cytotoxicity

Ham¿s F-10 medium

0.00

0

0

Nil

Ham¿s F-10 medium

0.00

0

0

Nil

2.5

0.01

1

0

Nil

2.5

0.01

1

1

Nil

5

0.00

0

0

Nil

5

0.02

2

2

Nil

10

0.03

2

1

Nil

10

0.02

2

1

TT

20

-

-

-

TTT

20

-

-

-

TTT

26

-

-

-

TTT

26

-

-

-

TTT

33

-

-

-

TTT

33

-

-

-

TTT

39

-

-

-

TTT

39

-

-

-

TTT

Cyclophosphamide

(40 micrograms/ml)

0.03

3

2

-

Cyclophosphamide

(50 micrograms/ml)

0.10

8

7

-

Test 2 ¿ Without S9 Mix, 24 hr Harvest

Concentration (micrograms/ml)

Aberration Frequency (lesions/cell)

Aberrant Cell Frequency (% Including Gaps)

Aberrant Cell Frequency (% Excluding Gaps)

Cytotoxicity

Ham¿s F-10 medium

0.02

2

2

Nil

Ham¿s F-10 medium

0.03

3

0

Nil

20

0.02

2

0

Nil

20

0.05

5

3

Nil

39

0.02

2

1

Nil

39

0.04

4

0

Nil

58

0.01

1

1

Nil

58

0.06

6

1

Nil

78

-

-

-

TTT

78

-

-

-

TTT

104

-

-

-

TTT

104

-

-

-

TTT

130

-

-

-

TTT

130

-

-

-

TTT

156

-

-

-

TTT

156

-

-

-

TTT

Methyl methane-sulphonate

(10 micrograms/ml)

0.30

21

14

-

Methyl methane-sulphonate

(20 micrograms/ml)

0.71

33

28

-

Test 2 ¿ Without S9 Mix, 48 hr Harvest

Concentration (micrograms/ml)

Aberration Frequency (lesions/cell)

Aberrant Cell Frequency (% Including Gaps)

Aberrant Cell Frequency (% Excluding Gaps)

Cytotoxicity

Ham¿s F-10 medium

0.01

1

1

Nil

Ham¿s F-10 medium

0.00

0

0

Nil

20

0.00

0

0

Nil

20

0.00

0

0

Nil

39

0.01

1

1

Nil

39

0.00

0

0

Nil

58

0.00

0

0

T

58

0.01

1

0

T

78

-

-

-

TTT

78

-

-

-

TTT

104

-

-

-

TTT

104

-

-

-

TTT

130

-

-

-

TTT

130

-

-

-

TTT

156

-

-

-

TTT

156

-

-

-

TTT

Methyl methane-sulphonate

(20 micrograms/ml)

0.21

11

8

-

Methyl methane- sulphonate

(40 micrograms/ml)

3.20

60

60

-

Test 3 ¿ With S9 Mix, 24 hr Harvest

Concentration (micrograms/ml)

Aberration Frequency (lesions/cell)

Aberrant Cell Frequency (% Including Gaps)

Aberrant Cell Frequency (% Excluding Gaps)

Cytoxicity

Ham¿s F-10 medium

0.04

4

0

Nil

Ham¿s F-10 medium

0.04

4

0

Nil

2.5

-

-

-

Nil

2.5

-

-

-

Nil

5

-

-

-

Nil

5

-

-

-

Nil

7.5

-

-

-

Nil

7.5

-

-

-

Nil

10

-

-

-

Nil

10

-

-

-

Nil

15

0.20

12

8

TT

15

0.18

12

6

TT

20

-

-

-

TTT

20

-

-

-

TTT

25

-

-

-

TTT

25

-

-

-

TTT

30

-

-

-

TTT

30

-

-

-

TTT

Cyclophosphamide

(30 micrograms/ml)

0.24

14

12

-

Cyclophosphamide

(40 micrograms/ml)

0.32

17

11

-

Test 3 - see tables below

Conclusions:
The test substance is not clastogenic in the absence of metabolic activation. The test substance is also not clastogenic in the presence of metabolic activation at non-cytotoxic concentrations. At cytotoxic concentrations, the test substance is weakly clastogenic.
Executive summary:

This study examined the potential of the test substance Marlon A 350 to cause chromosomal aberrations in mammalian cells. Chinese hamster ovary cells were exposed to concentrations of 0.32 to 78 ug/ml with S9, and 1.25 to 156 ug/ml without S9. Methyl methanesuflphonate and cyclophosphamide were used as positive controls. No biologically significant results were seen in treated cultures in the absence of metabolic activation. Positive responses were seen at cytotoxic concentrations in the presence of S9. Concentrations below the level of cytotoxicty with S9 did not show positive results. The test substance is not clastogenic in the absence of metabolic activation, or with metabolic activation below cytotoxic concentrations. These results indicate that LAS is weakly clastogenic at cytotoxic concentrations but negative at concentrations below cytotoxic concentrations

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Description of key information

No key genetic toxicity data with the target substance is available. A read across evaluation was developed with LABS Na as supporting substance. LABS Na was demonstrated to be negative in 4 in vivo cytogenicity/chromosome aberration tests.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Additional information

No key genetic toxicity data with the target substance is available. A read across evaluation was developed with LABS Na as supporting substance.

genetic toxicity - in vitro

- Ames: A bacterial mutagenicity study (Ames test) was conducted on LABS Na and was found to be negative for mutagenicity.

- Chromosome aberration: This study examined the potential of the test substance Marlon A 350 to cause chromosomal aberrations in mammalian cells. Chinese hamster ovary cells were exposed to concentrations of 0.32 to 78 ug/ml with S9, and 1.25 to 156 ug/ml without S9. Methyl methanesulphonate and cyclophosphamide were used as positive controls. No biologically relevant changes were seen in treated cultures in the absence of metabolic activation. Positive responses were seen at cytotoxic concentrations in the presence of S9. Concentrations below the level of cytotoxicity with S9 did not show positive results. The test substance is not clastogenic in the absence of metabolic activation, or with metabolic activation below cytotoxic concentrations.These results indicate that LABS Na is weakly clastogenic at cytotoxic concentrations but negative at concentrations below cytotoxic concentrations.

- Mammalian cell gene mutation test: This study examined the potential of the test substance to cause mutations in mammalian cells. Chinese Hamster Ovary (CHO) cells were exposed to concentrations of 0, 0.6, 1, 1.8, 3, and 6 ug/ml without S9, and 0, 6, 10, 18, 30, and 60 ug/ml with S9. The cells were then examined for cytogenicity and mutation frequency. Ethyl methane sulfonate and 3-(20-)methylcholanthrene were used as positive control substances. Preliminary tests show the test substance was cytogenic at concentrations of 50 ug/ml or greater with metabolic activation, and 100 ug/ml or above without metabolic activation. There was no biologically significant increase in mutation frequency in the treated groups. The test substance is considered not mutagenic to CHO cells both in the presence and absence of S9.

genetic toxicity - in vivo

1/ A group of 7 male mice was fed a diet containing 0.6% test substance for 9 months. At the end of this period, the animals were each mated with two untreated females. On day 13 of pregnancy, the females were sacrificed, and the ovaries and uteri were examined. No increase in dominant lethal induction was seen as compared to controls. The test substance does not cause genetic disorders.

2/ Groups of male mice were given doses of 200, 400, or 800 mg/kg of Benzenesulfonic acid, C10-14-alkyl derivs., sodium salts. At 6, 24, and 48 hrs, 3 of the mice from each dosage group were sacrificed. The bone marrow cells from the femurs were collected and examined for chromosome aberrations. In addition, one group of mice was exposed daily for 5 consecutive days. Additional groups of mice were exposed to commercial detergents containing 19% or 17.1% of the test substance. Mitomycin C was used as a positive control. None of the treatment groups showed any significant increase in chromosome aberrations as compared to negative controls. The test substance in not clastogenic.

3/ Groups of 5 male rats were fed a diet containing 0.9% test substance for 9 months. At the end of this period, the animals were sacrificed, and the bone marrow cells examined for chromosome aberrations. No increase in chromosome aberrations was seen as compared to controls. The test substance is not clastogenic.

4/ A group of 5 male mice was fed a diet containing 0.9% test substance for 9 months. At the end of this period, the animals were sacrificed, and the bone marrow cells examined for chromosome aberrations. No increase in chromosome aberrations was seen as compared to controls. The test substance is not clastogenic.

Justification for classification or non-classification

Based on the results described, the substance is not to be classified as mutagenic according to CLP Regulation.