Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Geranyl phenylacetate (IUPAC name: (2E)-3,7-dimethylocta-2,6-dien-1-yl 2-phenylacetate). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. Geranyl phenylacetate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.

Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Link to relevant study records
Reference
Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR Toolbox version 3.4 and the supporting QMRF report has been attached
Qualifier:
according to guideline
Guideline:
other: Refer below principle
Principles of method if other than guideline:
Prediction is done using OECD QSAR Toolbox version 3.4, 2017
GLP compliance:
not specified
Type of assay:
bacterial reverse mutation assay
Specific details on test material used for the study:
- Name of the test material: Geranyl phenylacetate
- IUPAC name: (2E)-3,7-dimethylocta-2,6-dien-1-yl 2-phenylacetate
- Molecular formula: C18H24O2
- Molecular weight: 272.3856 g/mol
- Substance type: Organic
- Smiles: c1(CC(OC\C=C(\CC\C=C(\C)C)C)=O)ccccc1
Target gene:
Histidine
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
Details on mammalian cell type (if applicable):
Not applicable
Additional strain / cell type characteristics:
not specified
Cytokinesis block (if used):
No data
Metabolic activation:
with
Metabolic activation system:
S9 metabolic activation system
Test concentrations with justification for top dose:
No data
Vehicle / solvent:
No data
Untreated negative controls:
not specified
Negative solvent / vehicle controls:
not specified
True negative controls:
not specified
Positive controls:
not specified
Positive control substance:
not specified
Details on test system and experimental conditions:
No data
Rationale for test conditions:
No data
Evaluation criteria:
Prediction is done considering a dose dependent increase in the number of revertants/plate
Statistics:
No data
Species / strain:
S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
Metabolic activation:
with
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Additional information on results:
No data
Remarks on result:
no mutagenic potential (based on QSAR/QSPR prediction)

The prediction was based on dataset comprised from the following descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 6 nearest neighbours
Domain  logical expression:Result: In Domain

(((((((("a" or "b" or "c" or "d" )  and ("e" and ( not "f") )  )  and ("g" and ( not "h") )  )  and ("i" and ( not "j") )  )  and ("k" and ( not "l") )  )  and ("m" and ( not "n") )  )  and "o" )  and ("p" and "q" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Esters (Chronic toxicity) by US-EPA New Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Michael addition AND Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals AND Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Arenes by DNA binding by OECD

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as SN2 AND SN2 >> SN2 reaction at sp3 carbon atom AND SN2 >> SN2 reaction at sp3 carbon atom >> Allyl acetates and related chemicals by Protein binding by OECD

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as Esters AND Vinyl/Allyl Esters by Aquatic toxicity classification by ECOSAR

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OASIS v.1.4

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as AN2 OR AN2 >>  Michael-type addition, quinoid structures OR AN2 >>  Michael-type addition, quinoid structures >> Flavonoids OR AN2 >>  Michael-type addition, quinoid structures >> Quinones and Trihydroxybenzenes OR AN2 >> Carbamoylation after isocyanate formation OR AN2 >> Carbamoylation after isocyanate formation >> N-Hydroxylamines OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds >> Four- and Five-Membered Lactones OR AN2 >> Michael-type conjugate addition to activated alkene derivatives OR AN2 >> Michael-type conjugate addition to activated alkene derivatives >> Alpha-Beta Conjugated Alkene Derivatives with Geminal Electron-Withdrawing Groups OR AN2 >> Nucleophilic addition reaction with cycloisomerization OR AN2 >> Nucleophilic addition reaction with cycloisomerization >> Hydrazine Derivatives OR AN2 >> Schiff base formation OR AN2 >> Schiff base formation >> Dicarbonyl compounds OR AN2 >> Schiff base formation >> Halofuranones OR AN2 >> Schiff base formation >> Polarized Haloalkene Derivatives OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation after aldehyde release OR AN2 >> Shiff base formation after aldehyde release >> Specific Acetate Esters OR AN2 >> Shiff base formation for aldehydes OR AN2 >> Shiff base formation for aldehydes >> Haloalkane Derivatives with Labile Halogen OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation >> Haloalkenes with Electron-Withdrawing Groups OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation >> Polarized Haloalkene Derivatives OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Non-covalent interaction >> DNA intercalation >> Aminoacridine DNA Intercalators OR Non-covalent interaction >> DNA intercalation >> Bleomycin and Structurally Related Compounds OR Non-covalent interaction >> DNA intercalation >> Coumarins OR Non-covalent interaction >> DNA intercalation >> DNA Intercalators with Carboxamide and Aminoalkylamine Side Chain OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Nitroaromatics OR Non-covalent interaction >> DNA intercalation >> Organic Azides OR Non-covalent interaction >> DNA intercalation >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR Non-covalent interaction >> DNA intercalation >> Quinolone Derivatives OR Non-covalent interaction >> DNA intercalation >> Quinones and Trihydroxybenzenes OR Non-specific OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    >> Specific Imine and Thione Derivatives OR Radical OR Radical >> Generation of ROS by glutathione depletion (indirect) OR Radical >> Generation of ROS by glutathione depletion (indirect) >> Haloalkanes Containing Heteroatom OR Radical >> Radical mechanism by ROS formation OR Radical >> Radical mechanism by ROS formation (indirect) or direct radical attack on DNA OR Radical >> Radical mechanism by ROS formation (indirect) or direct radical attack on DNA >> Organic Peroxy Compounds OR Radical >> Radical mechanism by ROS formation >> Five-Membered Aromatic Nitroheterocycles OR Radical >> Radical mechanism by ROS formation >> Organic Azides OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Bleomycin and Structurally Related Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Conjugated Nitro Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Coumarins OR Radical >> Radical mechanism via ROS formation (indirect) >> Flavonoids OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Nitroaromatics OR Radical >> Radical mechanism via ROS formation (indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Hydrazine Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> N-Hydroxylamines OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroaniline Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Polynitroarenes OR Radical >> Radical mechanism via ROS formation (indirect) >> p-Substituted Mononitrobenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Quinones and Trihydroxybenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Specific Imine and Thione Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Thiols OR SN1 OR SN1 >> Alkylation after metabolically formed carbenium ion species OR SN1 >> Alkylation after metabolically formed carbenium ion species >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR SN1 >> Nucleophilic attack after carbenium ion formation OR SN1 >> Nucleophilic attack after carbenium ion formation >> Acyclic Triazenes OR SN1 >> Nucleophilic attack after carbenium ion formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after carbenium ion formation >> Pyrrolizidine Derivatives OR SN1 >> Nucleophilic attack after carbenium ion formation >> Specific Acetate Esters OR SN1 >> Nucleophilic attack after nitrene formation OR SN1 >> Nucleophilic attack after nitrene formation >> Organic Azides OR SN1 >> Nucleophilic attack after nitrenium ion formation OR SN1 >> Nucleophilic attack after nitrenium ion formation >> N-Hydroxylamines OR SN1 >> Nucleophilic attack after nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines OR SN1 >> Nucleophilic attack after nitrosonium cation formation OR SN1 >> Nucleophilic attack after nitrosonium cation formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Conjugated Nitro Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Fused-Ring Nitroaromatics OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroaniline Derivatives OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Polynitroarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> p-Substituted Mononitrobenzenes OR SN1 >> Nucleophilic substitution on diazonium ion OR SN1 >> Nucleophilic substitution on diazonium ion >> Specific Imine and Thione Derivatives OR SN1 >> SN1 reaction at nitrogen-atom bound to a good leaving group or on  nitrenium ion OR SN1 >> SN1 reaction at nitrogen-atom bound to a good leaving group or on  nitrenium ion >> N-Acyloxy(Alkoxy) Arenamides OR SN2 OR SN2 >> Acylation OR SN2 >> Acylation >> N-Hydroxylamines OR SN2 >> Acylation >> Specific Acetate Esters OR SN2 >> Acylation involving a leaving group  OR SN2 >> Acylation involving a leaving group  >> Haloalkane Derivatives with Labile Halogen OR SN2 >> Acylation involving a leaving group after metabolic activation OR SN2 >> Acylation involving a leaving group after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2 >> Alkylation OR SN2 >> Alkylation >> Alkylphosphates, Alkylthiophosphates and Alkylphosphonates OR SN2 >> Alkylation, direct acting epoxides and related OR SN2 >> Alkylation, direct acting epoxides and related >> Epoxides and Aziridines OR SN2 >> Alkylation, direct acting epoxides and related after cyclization OR SN2 >> Alkylation, direct acting epoxides and related after cyclization >> Nitrogen and Sulfur Mustards OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Haloalkenes with Electron-Withdrawing Groups OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Polarized Haloalkene Derivatives OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Haloalkane Derivatives with Labile Halogen OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Sulfonates and Sulfates OR SN2 >> Alkylation, ring opening SN2 reaction OR SN2 >> Alkylation, ring opening SN2 reaction >> Four- and Five-Membered Lactones OR SN2 >> Direct acting epoxides formed after metabolic activation OR SN2 >> Direct acting epoxides formed after metabolic activation >> Coumarins OR SN2 >> Direct acting epoxides formed after metabolic activation >> Quinoline Derivatives OR SN2 >> Direct acylation involving a leaving group OR SN2 >> Direct acylation involving a leaving group >> Acyl Halides OR SN2 >> Direct nucleophilic attack on diazonium cation OR SN2 >> Direct nucleophilic attack on diazonium cation >> Hydrazine Derivatives OR SN2 >> DNA alkylation OR SN2 >> DNA alkylation >> Vicinal Dihaloalkanes OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) >> Vicinal Dihaloalkanes OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Halofuranones OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Specific Acetate Esters OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation >> Geminal Polyhaloalkane Derivatives OR SN2 >> SN2 at an activated carbon atom OR SN2 >> SN2 at an activated carbon atom >> Quinoline Derivatives OR SN2 >> SN2 at sp3 and activated sp2 carbon atom OR SN2 >> SN2 at sp3 and activated sp2 carbon atom >> Polarized Haloalkene Derivatives OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group >> N-Acetoxyamines OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group or nitrenium ion OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group or nitrenium ion >> N-Acyloxy(Alkoxy) Arenamides by DNA binding by OASIS v.1.4

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as SN2 AND SN2 >> SN2 Reaction at a sp3 carbon atom AND SN2 >> SN2 Reaction at a sp3 carbon atom >> Activated alkyl esters and thioesters  by Protein binding by OASIS v1.4

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> (Tio)carbamoylation of protein nucleophiles OR Acylation >> (Tio)carbamoylation of protein nucleophiles >> Isothiocyanates, Isocyanates OR Acylation >> Acylation involving an activated (glucuronidated) carboxamide group OR Acylation >> Acylation involving an activated (glucuronidated) carboxamide group >> Carboxylic Acid Amides OR Acylation >> Acylation involving an activated (glucuronidated) ester group OR Acylation >> Acylation involving an activated (glucuronidated) ester group >> Arenecarboxylic Acid Esters OR Acylation >> Direct acylation involving a leaving group OR Acylation >> Direct acylation involving a leaving group >> (Thio)Acetates  OR Acylation >> Direct acylation involving a leaving group >> (Thio)Acyl and (thio)carbamoyl halides and cyanides  OR Acylation >> Direct acylation involving a leaving group >> Anhydrides (sulphur analogues of anhydrides)  OR Acylation >> Direct acylation involving a leaving group >> Azlactones and unsaturated lactone derivatives  OR Acylation >> Direct acylation involving a leaving group >> Carbamates  OR Acylation >> Direct acylation involving a leaving group >> Carboxylic Acid Amides OR Acylation >> Ester aminolysis OR Acylation >> Ester aminolysis >> Amides OR Acylation >> Ester aminolysis or thiolysis OR Acylation >> Ester aminolysis or thiolysis >> Activated aryl esters  OR Acylation >> Ester aminolysis or thiolysis >> Carbamates  OR Acylation >> Ring opening acylation OR Acylation >> Ring opening acylation >> Active cyclic agents  OR Acylation >> Ring opening acylation >> beta-Lactams  OR AN2 OR AN2 >> Michael addition to activated double bonds OR AN2 >> Michael addition to activated double bonds >> alpha,beta-Unsaturated Carbonyls and Related Compounds OR AN2 >> Michael addition to alpha, beta-unsaturated acids and esters OR AN2 >> Michael addition to alpha, beta-unsaturated acids and esters >> alpha,beta-Unsaturated Carboxylic Acids and Esters OR AN2 >> Michael type addition to activated double bond of pyrimidine bases OR AN2 >> Michael type addition to activated double bond of pyrimidine bases >> Pyrimidines and Purines OR AN2 >> Michael-type addition to quinoid structures  OR AN2 >> Michael-type addition to quinoid structures  >> Carboxylic Acid Amides OR AN2 >> Michael-type addition to quinoid structures  >> N-Substituted Aromatic Amines OR AN2 >> Michael-type addition to quinoid structures  >> Substituted Anilines OR AN2 >> Michael-type addition to quinoid structures  >> Substituted Phenols OR AN2 >> Nucleophilic addition to pyridonimine tautomer of aminopyridoindoles or aminopyridoimidazoles (hypothesized) OR AN2 >> Nucleophilic addition to pyridonimine tautomer of aminopyridoindoles or aminopyridoimidazoles (hypothesized) >> Heterocyclic Aromatic Amines OR AN2 >> Schiff base formation with carbonyl group of pyrimidine and purine bases OR AN2 >> Schiff base formation with carbonyl group of pyrimidine and purine bases >> Pyrimidines and Purines OR AN2 >> Thiocarbamoylation of protein nucleophiles OR AN2 >> Thiocarbamoylation of protein nucleophiles >> Isothiocyanates OR Ionic interaction OR Ionic interaction >> Substituted guanidines OR Ionic interaction >> Substituted guanidines >> Guanidines OR Michael addition OR Michael addition >> Michael addition on alpha,beta-Unsaturated carbonyl compounds OR Michael addition >> Michael addition on alpha,beta-Unsaturated carbonyl compounds >> alpha,beta-Aldehydes  OR Michael addition >> Michael addition on conjugated systems with electron withdrawing group OR Michael addition >> Michael addition on conjugated systems with electron withdrawing group >> alpha,beta-Carbonyl compounds with polarized double bonds  OR Michael addition >> Michael addition on conjugated systems with electron withdrawing group >> Conjugated systems with electron withdrawing groups  OR Michael addition >> Michael addition on conjugated systems with electron withdrawing group >> Cyanoalkenes OR No alert found OR Nucleophilic addition OR Nucleophilic addition >> Addition to carbon-hetero double bonds OR Nucleophilic addition >> Addition to carbon-hetero double bonds >> Ketones OR Radical reactions OR Radical reactions >> ROS generation and direct attack of hydroxyl radical to the C8 position of nucleoside base OR Radical reactions >> ROS generation and direct attack of hydroxyl radical to the C8 position of nucleoside base >> Heterocyclic Aromatic Amines OR Schiff base formation OR Schiff base formation >> Direct acting Schiff base formers OR Schiff base formation >> Direct acting Schiff base formers >> 1,2-Dicarbonyls and 1,3-Dicarbonyls  OR Schiff base formation >> Schiff base formation with carbonyl compounds OR Schiff base formation >> Schiff base formation with carbonyl compounds >> Aldehydes OR SE reaction (CYP450-activated heterocyclic amines) OR SE reaction (CYP450-activated heterocyclic amines) >> Direct attack of arylnitrenium cation to the C8 position of nucleoside base  OR SE reaction (CYP450-activated heterocyclic amines) >> Direct attack of arylnitrenium cation to the C8 position of nucleoside base  >> Heterocyclic Aromatic Amines OR SN2 >> Cyanoalkylation of proteins via the nucleophilic substitution at sp3-carbon atom of cyanohydrins OR SN2 >> Cyanoalkylation of proteins via the nucleophilic substitution at sp3-carbon atom of cyanohydrins >> Cyanohydrins OR SN2 >> Interchange reaction with sulphur containing compounds OR SN2 >> Interchange reaction with sulphur containing compounds >> Thiols and disulfide compounds  OR SN2 >> Nucleophilic substitution at sp3 carbon atom OR SN2 >> Nucleophilic substitution at sp3 carbon atom >> Alkyl halides  OR SN2 >> Nucleophilic substitution at sp3 carbon atom >> alpha-Activated haloalkanes  OR SN2 >> Nucleophilic substitution on benzilyc carbon atom OR SN2 >> Nucleophilic substitution on benzilyc carbon atom >> alpha-Activated benzyls  OR SN2 >> Thiocyanate formation via the nucleophilic-type substitution at the disulfide bond of proteins and enzymes OR SN2 >> Thiocyanate formation via the nucleophilic-type substitution at the disulfide bond of proteins and enzymes >> Cyanohydrins OR SNVinyl OR SNVinyl >> SNVinyl at a vinylic (sp2) carbon atom OR SNVinyl >> SNVinyl at a vinylic (sp2) carbon atom >> Vinyl type compounds with electron withdrawing groups  OR SR reaction (peroxidase-activated heterocyclic amines) OR SR reaction (peroxidase-activated heterocyclic amines) >> Direct attack of arylnitrenium radical to the C8 position of nucleoside base OR SR reaction (peroxidase-activated heterocyclic amines) >> Direct attack of arylnitrenium radical to the C8 position of nucleoside base >> Heterocyclic Aromatic Amines by Protein binding by OASIS v1.4

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as SN2 AND SN2 >> SN2 reaction at sp3 carbon atom AND SN2 >> SN2 reaction at sp3 carbon atom >> Allyl acetates and related chemicals by Protein binding by OECD

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as No alert found by Protein binding by OECD

Domain logical expression index: "k"

Referential boundary: The target chemical should be classified as No alert found by in vitro mutagenicity (Ames test) alerts by ISS

Domain logical expression index: "l"

Referential boundary: The target chemical should be classified as Nitro-aromatic by in vitro mutagenicity (Ames test) alerts by ISS

Domain logical expression index: "m"

Referential boundary: The target chemical should be classified as Not classified by Oncologic Primary Classification

Domain logical expression index: "n"

Referential boundary: The target chemical should be classified as Aromatic Amine Type Compounds OR Carbamate Type Compounds OR Thiocarbamate Type Compounds by Oncologic Primary Classification

Domain logical expression index: "o"

Referential boundary: The target chemical should be classified as Not bioavailable by Lipinski Rule Oasis ONLY

Domain logical expression index: "p"

Parametric boundary:The target chemical should have a value of log Kow which is >= 5.61

Domain logical expression index: "q"

Parametric boundary:The target chemical should have a value of log Kow which is <= 7.54

Conclusions:
Geranyl phenylacetate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Executive summary:

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Geranyl phenylacetate (IUPAC name: (2E)-3,7-dimethylocta-2,6-dien-1-yl 2-phenylacetate). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. Geranyl phenylacetate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.

Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

Gene mutation in vitro:

Prediction model based estimation and data from read across chemicals have been reviewed to determine the mutagenic nature of Geranyl phenylacetate. The summary is as mentioned below:

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Geranyl phenylacetate (IUPAC name: (2E)-3,7-dimethylocta-2,6-dien-1-yl 2-phenylacetate). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. Geranyl phenylacetate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.

In a study by Mortelmans et al (Environmental Mutagenesis, 1986) for 70 -80% structurally and functionally similar read across chemical, gene mutation toxicity study was performed for geranyl acetate (RA CAS no 105 -87 -3; IUPAC name: (2E)-3,7-dimethylocta-2,6-dien-1-yl acetate) to evaluate its mutagenic nature. The study was performed as per the preincubation protocol using Salmonella typhimurium strain TA100, TA1535, TA1537, TA98 both in the presence and absence of S9 metabolic activation system at doses of 0, 1, 3, 10, 33, 100, 333, 1000, 3333 µg/plate. DMSO was used at the vehicle. The plates were incubated for 48 hrs after 20 mins preincubation before the evaluation of the revertant colonies could be made. Geranyl acetate did notinduce mutation in the Salmonella typhimurium strain TA100, TA1535, TA1537, TA98 both in the presence and absence of S9 metabolic activation system and hence the chemical is not likely to classify as a gene mutant in vitro.

In another study conducted by Florin et al. (Toxicology, 1980), Benzyl Acetate (RA CAS no 140 -11 -4; IUPAC name: Benzyl acetate) having 50 -60% structural similarity was investigated for its ability to induce mutagenic activity when tested in an in vitro reverse mutagenicity test using four strains of the bacteria Salmonella typhimurium, specifically TA 98, TA 100, TA 1535 and TA 1537. Spot test was performed for the chemical at dose levels of 0.03, 0.3, 3 and 30 µmol/plate. The study was conducted both in the presence and absence of metabolic activation using S9 mix from Aroclor 1254 or methylcholanthrene induced rats. Benzyl acetate is not mutagenic in the bacterium Salmonella typhimurium LT-2 strains TA 98, TA 100, TA1535 and TA37 with and without S9 metabolic activation system and hence is not likely to classify as gene mutant in vitro.

 

In a gene toxicity test by Sustainability Support Services (2015) for a 50 -60% structurally and functionally similar read across chemical, Chinese Hamster Ovary (CHO) cells were exposed to Methyl phenylacetate (RA CAS no 101 -41 -7) in the concentration of 0, 0.5, 1.0, 2.5 or 5.0 mM both with and without metabolic activation for 3 hours. The results showed that there was no evidence of cytotoxicity after treatment. Independently of tested Methyl phenylacetate concentration, the results showed no evidence of gene toxicity. Therefore, it is considered that Methyl phenylacetate in the concentration of 0, 0.5, 1.0, 2.5 or 5.0 mM does not cause genetic mutation(s) when CHO cells are exposed to the test chemical in the presence or absence of metabolic activation.

Based on the data available for the target chemical and its read across, Geranyl phenylacetate does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro as per the criteria mentioned in CLP regulation.

Justification for classification or non-classification

Based on the data available for the target chemical and its read across, Geranyl phenylacetate does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro as per the criteria mentioned in CLP regulation.