Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro gene mutation study in bacteria
Type of information:
experimental study
Adequacy of study:
key study
Study period:
2017
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2017
Report date:
2017

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Qualifier:
according to guideline
Guideline:
EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
Qualifier:
according to guideline
Guideline:
JAPAN: Guidelines for Screening Mutagenicity Testing Of Chemicals
Qualifier:
according to guideline
Guideline:
EPA OPPTS 870.5100 - Bacterial Reverse Mutation Test (August 1998)
GLP compliance:
yes (incl. QA statement)
Type of assay:
bacterial reverse mutation assay

Test material

Constituent 1
Chemical structure
Reference substance name:
2-ethylhexyl 7-oxabicyclo[4.1.0]heptane-3-carboxylate
EC Number:
263-471-3
EC Name:
2-ethylhexyl 7-oxabicyclo[4.1.0]heptane-3-carboxylate
Cas Number:
62256-00-2
Molecular formula:
C15H26O3
IUPAC Name:
2-ethylhexyl 7-oxabicyclo[4.1.0]heptane-3-carboxylate
Specific details on test material used for the study:
Identification: 2-ethylhexyl 7-oxabicyclo[4.1.0]heptane-3-carboxylate
Physical state/Appearance: Clear colourless liquid
Batch: AH03201
Purity: 100%
Expiry Date: 01 February 2019
Storage Conditions: Approximately 4 °C in the dark

Method

Species / strain
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
Metabolic activation:
with and without
Metabolic activation system:
Rat S9, Arochlor 1254 induced
Test concentrations with justification for top dose:
1.5, 5, 15, 50, 150, 500, 1500 and 5000 μg/plate. The top dose was selected as it is the highest dose recommended in the guideline.
Vehicle / solvent:
DMSO
Controls
Untreated negative controls:
yes
Negative solvent / vehicle controls:
yes
True negative controls:
yes
Positive controls:
yes
Positive control substance:
4-nitroquinoline-N-oxide
9-aminoacridine
N-ethyl-N-nitro-N-nitrosoguanidine
other: 2-Aminoanthracene
Details on test system and experimental conditions:
Strains Genotype Type of mutations indicated
TA1537 his C 3076; rfa-; uvrB-: frame shift mutations
TA98 his D 3052; rfa-; uvrB-;R-factor
TA1535 his G 46; rfa-; uvrB-: base-pair substitutions
TA100 his G 46; rfa-; uvrB-;R-factor
Escherichia coli
Strain Genotype Type of mutations indicated
WP2uvrA trp-; uvrA-: base-pair substitution
All of the Salmonella strains are histidine dependent by virtue of a mutation through the histidine operon and are derived from S. typhimurium strain LT2 through mutations in the histidine locus. Additionally due to the "deep rough" (rfa-) mutation they possess a faulty lipopolysaccharide coat to the bacterial cell surface thus increasing the cell permeability to larger molecules. A further mutation, through the deletion of the uvrB- bio gene, causes an inactivation of the excision repair system and a dependence on exogenous biotin. In the strains TA98 and TA100, the R-factor plasmid pKM101 enhances chemical and UV-induced mutagenesis via an increase in the error-prone repair pathway. The plasmid also confers ampicillin resistance which acts as a convenient marker (Mortelmans and Zeiger, 2000). In addition to a mutation in the tryptophan operon, the E. coli tester strain contains a uvrA- DNA repair deficiency which enhances its sensitivity to some mutagenic compounds. This deficiency allows the strain to show enhanced mutability as the uvrA repair system would normally act to remove and repair the damaged section of the DNA molecule (Green and Muriel, 1976 and Mortelmans and Riccio, 2000).
The bacteria used in the test were obtained from:
• University of California, Berkeley, on culture discs, on 04 August 1995
• British Industrial Biological Research Association, on a nutrient agar plate, on 17 August 1987

All of the strains were stored at approximately -196 °C in a Statebourne liquid nitrogen freezer, model SXR 34.

In this assay, overnight sub-cultures of the appropriate coded stock cultures were prepared in nutrient broth (Oxoid Limited; lot number 1865318 05/21) and incubated at 37 °C for approximately 10 hours. Each culture was monitored spectrophotometrically for turbidity with titres determined by viable count analysis on nutrient agar plates.
Evaluation criteria:
All of the plates were incubated at 37 ± 3 °C for approximately 48 hours and scored for the presence of revertant colonies using an automated colony counting system. The plates were viewed microscopically for evidence of thinning (toxicity). A number of manual counts were required due to revertant colonies spreading slightly, thus distorting the actual plate count.
Statistics:
Statistical significance was confirmed by using Dunnetts Regression Analysis (* = p < 0.05) for those values that indicate statistically significant increases in the frequency of revertant colonies compared to the concurrent solvent control.

Results and discussion

Test resultsopen allclose all
Key result
Species / strain:
S. typhimurium TA 1535
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 1537
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 98
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Key result
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Key result
Species / strain:
E. coli WP2 uvr A
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid

Applicant's summary and conclusion

Conclusions:
The test article was not mutagenic under the conditions of the study.
Executive summary:

The test method was designed to be compatible with the guidelines for bacterial mutagenicity testing published by the major Japanese Regulatory Authorities including METI, MHLW and MAFF, the OECD Guidelines for Testing of Chemicals No. 471 "Bacterial Reverse Mutation Test", Method B13/14 of Commission Regulation (EC) number 440/2008 of 30 May 2008 and the USA, EPA OCSPP harmonized guideline - Bacterial Reverse Mutation Test.

 

Salmonella typhimuriumstrains TA1535, TA1537, TA98 and TA100 andEscherichia colistrain WP2uvrAwere treated with the test item using both the Ames plate incorporation and pre-incubation methods at up to eight dose levels, in triplicate, both with and without the addition of a rat liver homogenate metabolizing system (10% liver S9 in standard co-factors). The dose range for Experiment 1 was predetermined and was 1.5 to 5000 μg/plate. The experiment was repeated on a separate day (pre-incubation method) using fresh cultures of the bacterial strains and fresh test item formulations. The dose range was amended following the results of Experiment 1 and was 15 to 5000 μg/plate. Six test item concentrations were selected in Experiment 2 in order to achieve both four non-toxic dose levels and the potential toxic limit of the test item following the change in test methodology.

 

The vehicle (dimethyl sulphoxide) control plates gave counts of revertant colonies within the normal range. All of the positive control chemicals used in the test induced marked increases in the frequency of revertant colonies, both with or without metabolic activation. Thus, the sensitivity of the assay and the efficacy of the S9-mix were validated.

The maximum dose level of the test item in the first experiment was selected as the maximum recommended dose level of 5000 μg/plate. There was no visible reduction in the growth of the bacterial background lawn at any dose level, either in the presence or absence of metabolic activation (S9-mix), in the first mutation test (plate incorporation method) and consequently the same maximum dose level was used in the second mutation test. However, after employing the pre-incubation modification in the second mutation test, weakened bacterial background lawns were noted to several of the tester strains in the absence of S9-mix from 1500 μg/plate (TA1535 and TA1537) and at 5000 μg/plate (TA100). In the presence of S9-mix, weakened bacterial lawns were noted from 1500 μg/plate (TA100, TA1535 and TA1537) and at 5000 μg/plate (TA98). No test item precipitate was observed on the plates at any of the doses tested in either the presence or absence of S9-mix.

There were no biologically relevant increases in the frequency of revertant colonies recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix), in Experiment 1 (plate incorporation method). Similarly, no increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test item, either with or without metabolic activation (S9-mix), in Experiment 2 (pre-incubation method). Small, statistically significant increases in TA100 revertant colony frequency were observed in the first mutation test in the presence of S9-mix only at 5000 μg/plate. These increases were considered to be of no biological relevance because there was no evidence of a dose-response relationship or reproducibility. Furthermore, the individual revertant counts at the statistically significant dose level was within the in-house historical untreated/vehicle control range for the tester strain and the mean maximum fold increase was only 1.2 times the concurrent vehicle control.

 

2-Ethylhexyl 7-oxabicyclo[4.1.0]heptane-3-carboxylate was considered to be non-mutagenic under the conditions of this test.