Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 234-842-7 | CAS number: 12036-22-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- read-across based on grouping of substances (category approach)
- Adequacy of study:
- supporting study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- guideline study with acceptable restrictions
- Remarks:
- Data was taken directly from NTP website. A full study report was not available for review. Three bacterial strains were used. Five concentrations plus controls were evaluated. Assay was conducted both with and without metabolic activation. Due to similar physical-chemical properties, similar or lower transformation/dissolution results and similar or lower in vitro bioaccessibility in synthetic body fluids for tungsten dioxide (the target substance) than the source substances, the resulting toxicity potential would also be expected to be similar or lower, so read-across is appropriate. Therefore, the dose descriptors are expected to be sufficiently similar or higher for the target substance, and read-across to the source chemical is adequately protective. For more details refer to the attached description of the read-across approach.
- Justification for type of information:
- 1. HYPOTHESIS FOR THE CATEGORY APPROACH: The hypothesis is that properties are likely to be similar or follow a similar pattern because of the presence of a common metal ion, in this case tungstate.
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES):
Source: Tungsten trioxide
Target: Tungsten Dioxide
3. CATEGORY APPROACH JUSTIFICATION: See Annex 3 in CSR
4. DATA MATRIX: See Annex 3 in CSR
Cross-reference
- Reason / purpose for cross-reference:
- read-across: supporting information
Data source
Reference
- Reference Type:
- grey literature
- Title:
- Unnamed
- Year:
- 2 005
Materials and methods
Test guideline
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- yes
- Remarks:
- 3 bacterial strains were used, while 5 are recommended. 2-aminoanthracene should not be used as sole indicator of the efficacy of S-9. Each batch of S-9 should be characterized with a mutagen that requires metabolic activation by microsomal enzymes.
- GLP compliance:
- not specified
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- Tungsten trioxide
- EC Number:
- 215-231-4
- EC Name:
- Tungsten trioxide
- Cas Number:
- 1314-35-8
- Molecular formula:
- O3W
- IUPAC Name:
- trioxotungsten
- Details on test material:
- - Name of test material (as cited in study report): Tungsten trioxide
Constituent 1
Method
- Target gene:
- histidine locus
Species / strainopen allclose all
- Species / strain / cell type:
- E. coli WP2 uvr A pKM 101
- Species / strain / cell type:
- S. typhimurium TA 100
- Species / strain / cell type:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Metabolic activation system:
- male Sprague Dawley rat liver S9
- Test concentrations with justification for top dose:
- 0, 100, 500, 1000, 5000, 10000 µg/plate
- Vehicle / solvent:
- water
Controlsopen allclose all
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- Remarks:
- water
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- methylmethanesulfonate
- Remarks:
- without activation Migrated to IUCLID6: Used with E. coli WP2 uvr A pKM 101 strain
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- Remarks:
- water
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: 2-aminoanthracene (or occasionally, sterigmatocystin) was used with strains E. coli WP2 uvr A pKM 101, S. typhimurium TA98 and TA100
- Remarks:
- with activation
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: preincubation
- Evaluation criteria:
- Means and standard deviations were calculated for the number of mutants in every concentration group.
Results and discussion
Test resultsopen allclose all
- Key result
- Species / strain:
- E. coli WP2 uvr A pKM 101
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not specified
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not specified
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- not specified
- Positive controls validity:
- valid
- Remarks on result:
- other: all strains/cell types tested
- Remarks:
- Migrated from field 'Test system'.
Applicant's summary and conclusion
- Conclusions:
- In a reverse gene mutation assay in bacteria, strains TA98, TA100 of S. Typhimurium and E. coli pKM101 were exposed to Tungsten trioxide up to a limit concentration of 10.000 µg/plate in the presence and absence of mammalian metabolic activation (S9).
The positive controls induced the appropriate responses in the corresponding strains. There was no evidence of induced mutant colonies over background. This study is classified as acceptable. This study satisfies the basic requirement for Test Guideline OECD 471 for in vitro mutagenicity (bacterial reverse gene mutation) data but deviates in the following: 3 bacterial strains were used, while 5 are recommended. 2-aminoanthracene should not be used as sole indicator of the efficacy of S-9. Each batch of S-9 should be characterized with a mutagen that requires metabolic activation by microsomal enzymes.
According to the results of the study, Tungsten trioxide was non-mutagenic in the Ames test with Salmonella tester strains TA98, TA100 and E. coli pKM101 up to 10000 ug/plate in the presence and absence of metabolic activation. - Executive summary:
No in vitro genotoxicity data of sufficient quality are available for tungsten dioxide (target substance). However, in vitro genotoxicity data are available for tungsten trioxide (source substance), which will be used for read-across. Due to lower water solubility and lower toxicity for the target substance compared to the source substance, the resulting read-across from the source substance to the target substance is appropriate as a conservative estimate of potential toxicity for this endpoint. In addition, read-across is appropriate because the classification and labelling is more protective for the source substance than the target substance, the PBT/vPvB profile is the same, and the dose descriptors are, or are expected to be, lower for the source substance. For more details, refer to the read-across category approach included in the Category section of this IUCLID submission and/or as an Annex in the CSR.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.