Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 234-842-7 | CAS number: 12036-22-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
No data on the behavior of tungsten dioxide in the environment are available. However, data for sodium tungstate and tungsten metal are expected to adequately capture the range of mobility of tungsten dioxide in the environment. The adsorption/desorption is highly dependent on the characteristics of the soil system in question. For example, soil sorption coefficients of tungsten metal and sodium tungstate are found to increase with decreasing pH (Bednar et al, 2008). Additionally, soil-tungsten systems may take up to approximately 3-4 months to reach equilibrium (Griggs et al, 2009 and Bednar et al, 2008).
Soil sorption coefficients measured for sodium tungstate ranged from 16.6 to 863 (Bednar et al, 2008 and Griggs et al, 2009).
Other partitioning coefficients for tungsten in the environment were estimated using paired sampling data. Tungsten partition coefficients for water-sediment were derived using paired environmental monitoring samples of tungsten in water and sediment collected in various parts of the EU, resulting in a median calculated Kd of 140000 (Salminen R (Ed.) et al, 2005).
The following partitioning coefficients were statistically derived based on studies using appropriate methodology:
Kd soils (Griggs et al, 2009 and Bednar et al, 2008):
10thpercentile: 44 L/kg
Median: 174 L/kg
90thpercentile: 692 L/kg
Kd sediment (Salminen R (Ed.) et al, 2005):
10thpercentile: 28395 L/kg
Median: 140000 L/kg
90thpercentile: 700000 L/kg
Volatilization is not expected to be a significant pathway for tungsten dioxide, based on the low vapor pressure and ionic or insoluble state of most tungsten compounds in the environment.
Additional information
No data on the behavior of tungsten dioxide (target substance) in the environment are available. Adsorption data for tungsten metal and sodium tungstate (source substances) are presented in this section. The soluble species released are expected to be similar for each of the compounds, and are thus expected to behave similarly in the environment. However, the amount of soluble species resulting from tungsten metal and sodium tungstate is different, with sodium tungstate being much more soluble. Therefore, data for sodium tungstate and tungsten metal are expected to adequately capture the range of mobility of tungsten dioxide in the environment.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.