Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 246-805-2 | CAS number: 25306-75-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Specific investigations: other studies
Administrative data
- Endpoint:
- mechanistic studies
- Type of information:
- migrated information: read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: see 'Remark'
- Remarks:
- Well-documented publication and acceptable for assessment. Carbon disulphide is both a reagent in the manufacture, as well as a decomposition product of xanthates. Sodium isobutyl xanthate readily decomposes to carbon disulphide, especially in the presence of moisture/water. Therefore, the health effects of carbon disulphide (CS2) need to be considered in the assessment of sodium isobutyl xanthate.
Data source
Reference
- Reference Type:
- publication
- Title:
- Covalent cross-linking of erythrocyte spectrin by carbon disulfide in vivo
- Author:
- Valentine LM, Graham DG, and Anthony DC
- Year:
- 1 993
- Bibliographic source:
- Toxicology and Applied Pharmacology 121:71-77
Materials and methods
Test guideline
- Qualifier:
- no guideline followed
- Principles of method if other than guideline:
- The study addresses the mechanism of neurotoxicity of CS2 in rats, dosed by intraperitoneal injection. Particularly, its ability to covalently cross-link to a cytoskeletal protein of the erythrocytes, spectrin , is examined.The authors assess whether cross-linking of spectrin after exposure to CS2, can be used as a biomarker for neurotoxicity.
- GLP compliance:
- not specified
- Type of method:
- in vivo
- Endpoint addressed:
- neurotoxicity
Test material
- Reference substance name:
- Carbon disulphide
- EC Number:
- 200-843-6
- EC Name:
- Carbon disulphide
- Cas Number:
- 75-15-0
- Molecular formula:
- CS2
- IUPAC Name:
- dithioxomethane
- Test material form:
- solid: compact
- Details on test material:
- Carbon disulphide is both a reagent in the manufacture, as well as a decomposition product of xanthates. Sodium isobutyl xanthate readily decomposes to carbon disulphide, especially in the presence of moisture/water. Therefore, the health effects of carbon disulphide (CS2) need to be considered in the assessment of sodium isobutyl xanthate.
- Name of test material (as cited in study report): carbon disulfide (obtained from Fisher Chemicals, Fair Lawn, NJ)
- Analytical purity: not mentioned, but probably >99.9%; an internet search on the company provider was performed
Constituent 1
Test animals
- Species:
- rat
- Strain:
- Sprague-Dawley
- Sex:
- male
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Diet: ad libitum
- Water: ad libitum
ENVIRONMENTAL CONDITIONS
- Photoperiod (hrs dark / hrs light): 12
Administration / exposure
- Route of administration:
- intraperitoneal
- Vehicle:
- corn oil
- Details on exposure:
- Rats were dosed once daily by intraperitoneal injection with corn oil or CS2 in corn oil at 2 or 5 mmol/kg (total volume 0.15-0.4 ml) for periods of 21 and 42 days.
- Analytical verification of doses or concentrations:
- not specified
- Details on analytical verification of doses or concentrations:
- no data
- Duration of treatment / exposure:
- 21 or 42 d
- Frequency of treatment:
- daily
Doses / concentrations
- Remarks:
- Doses / Concentrations:
0, 2, 5 nmol/kg
Basis:
nominal conc.
- Control animals:
- yes, concurrent vehicle
Examinations
- Examinations:
- The ability of the rats to return their hind limbs under their body after forced extension to the rear was examined. Body weights of the animals were recorded each week. Within 24 hr of the last treatment rats were exsanguinated under chloral hydrate anesthesia and sections of the muscular branch of the posterior tibial nerve were fixed using 4% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.2. Nerve sections were postfixed in 2% osmium tetroxide, dehydrated in graded alcohols and propylene oxide, and embedded in Epon. Thick sections were stained using toluidine blue.
Results and discussion
- Details on results:
- No evidence of hind limb paralysis was observed. No axonal swellings were observed in any exposed group.
Any other information on results incl. tables
The SDS-PAGE showed two major bands in the region of 200 -250 kDa in all groups, that correspond to alpha- and beta-spectrin, and represented the proteins with the highest molecular weight in the controls. In the CS2 exposed groups, additional eluting proteins appeared in the 410 kDa region, as two distinct bands, with a more diffuse, less intensely staining region between the major bands. Based on the following peptide mapping, these two extra bands represent the spectrin dimer that failed to separate due to cross-linking. The selective base hydrolysis, suggested the presence of both thiourea and dithiocarbamate ester cross-linking structures in spectrin dimers. No spectrin dimer was detected in any of the control samples.
Applicant's summary and conclusion
- Conclusions:
- The study reveals that CS2 exposure results in covalent cross-linking of erythrocyte spectrin in vivo, after intraperitoneal injection of rats.
Carbon disulphide is both a reagent in the manufacture, as well as a decomposition product of xanthates. Sodium isobutyl xanthate readily decomposes to carbon disulphide, especially in the presence of moisture/water. Therefore, the health effects of carbon disulphide (CS2) need to be considered in the assessment of sodium isobutyl xanthate. - Executive summary:
What follows is the original abstract of the publication with slight modifications
Covalent cross-linking of proteins by CS2 has been demonstrated in vitro and represents a potential mechanism for the toxicity of this compound. In the present investigation the ability of CS2 to cross-link proteins covalently in vivo is demonstrated using denaturing polyacrylamide gel electrophoresis. Intraperitoneal injection of CS2 in rats at 2 or 5 mmoL/kg for 21 or 42 days produced several high-molecular-weight (~410 kDa) proteins eluted from erythrocyte membranes which were not present in control animals. Limited proteolysis of the high-molecular-weight protein bands, monomeric alpha-spectrin, and monomeric beta-spectrin using endoproteinase glu-C, followed by peptide mapping on denaturing polyacrylamide gels, showed the high-molecular-weight proteins to be alpha, beta heterodimers. The production of multiple heterodimers exhibiting different distances of migration was consistent with the existence of several preferred sites for cross-linking. Evidence for the presence of dithiocarbamate ester and thiourea cross-linking structures in spectrin dimers was obtained using selective base hydrolysis. No spectrin dimer was detected in control animals, and dimer formation demonstrated a cumulative dose response in CS2-treated rats. The longevity of red blood cells, the cumulative dose response, and the stability of the cross-linking structures endows spectrin cross-linking with the potential to serve as a biomarker of chronic low-level exposures to CS2 and may provide a means to correlate pathological changes with existing methods of CS2 exposure monitoring. The ability of CS2 to covalently cross-link erythrocyte spectrin suggests that CS2 may also cross-link other proteins in vivo and supports covalent cross-linking of proteins as a possible molecular mechanism through which CS2 manifests toxicity. If so, then spectrin cross-linking may parallel cross-linking reactions in the axon and provide a sensitive, pre-neurotoxic biomarker of this molecular event.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.