Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 942-135-6 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Alcohols, C20-30 (even numbered), is a UVCB substance that comprises several linear long chain alcohols, predominantly tetracosan-1-ol (C24), hexacosan-1-ol (C26), and octacosan-1-ol (C28). Together, these substances make up approximately 70% of the composition of Alcohols, C20-30 (even numbered). Other constituents include, to a much lesser extent, secondary long chain alcohols and complex mixtures of long chain carboxylate esters. On this basis, study data, where available, for each of the long chain alcohol constituents has been evaluated and considered together; this is consistent with the Category approach applied for Long Chain Alcohols (LCA) under REACH. In a conservative approach the most sensitive study result from the constituents of the LCA category have been identified and used to address the endpoint in question.
The REACH requirement in Annex IX for a study on bioaccumulation in aquatic species is not needed if the substance has a low potential for bioaccumulation and/or a low potential to cross biological membranes. The waiver argumentations are based on the technical difficulties associated with conducting bioaccumulation studies, the ready biodegradability of the test substance, the low toxicity in aquatic organisms and the low toxicity in mammals resulting in the unlikely potential for secondary poisoning, as presented in more detail below. A summary of the calculated BCF from published literature and calculated using EpiSuite for this dossier is also presented in the table below:
Test substance |
Method |
Bioconcentration Factor |
Remarks |
Reference |
Icosan-1-ol |
QSAR: BCFBAF v3.01 using Log Kow of 8.7 |
Log BCF 1.64 BCF = 43.49 L/kg wet-wt |
Reliable read-across study |
EpiSuite calculation |
Docosan-1-ol |
QSAR: BCFBAF v3.01 using Log Kow of 9.68 |
Log BCF 0.97 BCF = 9.225 L/kg wet-wt |
Reliable read-across study |
EpiSuite calculation |
Tetracosan-1-ol |
QSAR: BCFBAF v3.01 using Log Kow of 10.66 |
Log BCF 0.4 BCF = 2.483 L/kg wet-wt |
Reliable read-across study |
EpiSuite calculation |
Iconsan-1-ol and Docosan-1-ol |
QSAR: Recalculated from Connell and Hawker, 1988 using Log Kow of 7.75 |
Log BCF 4.5 BCF = 31800 L/kg wet-wt |
Not assignable |
OECD 2005c |
Hexacosan-1-ol |
QSAR: BCFBAF v3.01 using estimated Log Kow |
Log BCF 1.251 BCF = 17.84 L/kg wet-wt |
Reliable read-across study |
EpiSuite version 4.1. calculation |
Octacosan-1-ol |
QSAR: BCFBAF v3.01 using estimated Log Kow |
Log BCF 1.367 BCF = 23.26 L/kg wet-wt |
Reliable read-across study |
EpiSuite version 4.1. calculation |
Tetracosan-1-ol, Hexacosan-1-ol and Octacosan-1-ol |
QSAR: BCFBAF v3.01 using Log Kow of 15 (the Log Kow for Alcohols, C24 -28 is > 15; see section on physico-chemical properties) |
Log BCF 0.500 BCF = 3.162 L/kg wet-wt |
Reliable read-across study |
EpiSuite version 4.1. calculation |
Study not technically feasible
The requirement to conduct bioaccumulation studies for long chain alcohols, including the constituents tetracosan-1-ol, hexacosan-1-ol, and octacosan-1-ol, is waived due to technical difficulties in performing such a test. Guideline (standard) studies of bioaccumulation in fish would be confounded by the technical difficulties of maintaining the test alcohols (tetracosan-1-ol, hexacosan-1-ol, and octacosan-1-ol) in solution, as was demonstrated in long-term invertebrate studies reported in the OECD SIDS Report for Long Chain Alcohols (2006). Severe difficulties were encountered when studies were conducted with ≥C15 alcohols, which are similar to constituents of Alcohols, C20-30 (even numbered), as biodegradation in the test system was almost complete within the 24-hr test media renewal period.
Biodegradation
Substances that are themselves constituents of and analogous to other primary constituents of Alcohols, C20-30 (even numbered), (eicosan-1-ol (C20), docosan-1-ol (C22), 2-decyltetradecanol (C24) and tetradecyloctadecan-1-ol (C32)) were assessed for ready biodegradability in reliable (Klimisch 1 or 2) OECD Guideline 301B studies (Ready Biodegradability: CO2 Evolution Test). The key study by Flach (2014) reported 90% biodegradation of tetradecyloctadecan-1-ol in an OECD 301B CO2-evolution test over 28 days. More than 60% of tetradecyloctadecan-1-ol had degraded within the 10-day study window. The key study demonstrates that tetradecyloctadecan-1-ol, a C32 long chain alcohol, is readily biodegradable. In other studies, 2-decyltetradecanol (C24) degraded by 84%, docosan-1-ol (C22) by 87.9% and 87.5% and eicosan-1-ol (C20) by 88.4% in 28-day tests confirming the ready biodegradability of these long chain alcohols (Flach (2012b), Federle (2009), Flach (2012a) and Federle (2009), respectively).
All of the experimental studies and evidence from the published literature demonstrate that constituents and analogues of Alcohols, C20-30 (even numbered) will degrade in the aquatic environment. It is concluded that given the very close similarity between LCA Category alcohols, 2-decyltetradecanol and tetradecyloctadecan-1-ol, as well as similar physico-chemical properties and structure, it is fully expected that Alcohols, C20-30 (even numbered) will rapidly and readily biodegrade in the environment.
Toxicity to Aquatic Organisms
Generally the short-term aquatic toxicity of constituent substances (long-chain alcohols, as represented by, e.g. icosan-1-ol and docosan-1-ol) is low. According to the OECD SIDS Report for Long Chain Alcohols (2006) long-term toxicity is also considered to be very low and greater than the limit of solubility for alcohols ≥ C15 in chain length.
Toxicity to Mammals
There is no requirement in REACH to conduct a secondary poisoning assessment in view of the lack of toxic effects in mammals. Chronic and sub-chronic mammalian toxicity studies have shown that long chain alcohols are of low toxicity. Furthermore, combined repeated-dose studies with developmental endpoints, as well as reproductive and developmental studies, showed no effects at the highest dose tested. This evidence indicates that the test substance is not considered to be toxic (in PBT terms) to mammals and secondary poisoning is unlikely to occur in the environment.
Summary
The data requirement for bioaccumulation studies in aquatic and terrestrial organisms is waived on the evidence of technical difficulties, ready biodegradability and the absence of toxicity in aquatic organisms and mammals. For completeness log BCF’s for similar constituents, icosan-1-ol, docosan-1–ol and tetracosan-1-ol, were estimated to be 1.64, 0.97 and 0.4 kg/L, respectively using estimated Log Kow. Log BCFs of 0.5 kg/L using a Log Kow of 15 were also predicted for tetracosan-1 -ol, hexacosan-1 -ol and octacosan-1 -ol. Predicted BCFs for long chain alcohols are considered to be overestimates by orders of magnitude due to the natural ability of biochemical systems in organisms to metabolise alcohols (OECD SIDS Initial Assessment Report (2006); Veith et al (1979) and Connell and Hawker (1988)).
References
SIDS Initial Assessment Report on Long Chain Alcohols (2006). Organisation for Economic Cooperation and Development (OECD).
Veith GD, Defoe DL and Bergstedt BV (1979). Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish. Board Can. 36: 1040-1048.
Connell DW and Hawker DW (1988). Use of polynomial expressions to describe the bioconcentration of hydrophobic chemicals by fish. Ecotox. Environ. Safety 16: 242-257.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.