Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 908-749-3 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
Key value for chemical safety assessment
Additional information
No studies on toxicokinetics are available. However, toxicokinetic information can be derived from the physicochemical properties and the chemical reactivity of the constituents of the reaction mass of magnesium carbonate and magnesium hydroxide and magnesium oxide and magnesium peroxide.
The reactions that take place when the different components of the reaction mass of magnesium carbonate and magnesium hydroxide and magnesium oxide and magnesium peroxide are dissolved in water are equally applicable when the systemic availability of the reaction mass of magnesium carbonate and magnesium hydroxide and magnesium oxide and magnesium peroxide is assessed. Indeed, the chemicals can only be systemically available to the organs when they can be transported to different parts of the body, which requires dissolution of the chemicals in the blood.
As a consequence, the chemical reactions driving the environmental fate and the environmental toxicity of the reaction mass of magnesium carbonate and magnesium hydroxide and magnesium oxide and magnesium peroxide are also relevant for the assessment of the toxicokinetics of this multi-constituent substance.
MgO2+ 2 H2O -> Mg2++ 2 (OH)-+ H2O2
H2O2+ H2O -> 2 H2O + O2
MgO + H2O -> Mg2++ 2 (OH)-
Mg(OH)2-> Mg2++ 2 OH-
MgCO3-> Mg2++ CO32 -
Therefore, the read-across from test results available for hydrogen peroxide and magnesium hydroxide is considered justified not only for ecotoxicological but also for toxicological endpoints. According to the applicable chemical reaction (see above), the amount of hydrogen peroxide formed is equimolar to the amount of magnesium peroxide present in the reaction mass. As the concentration of magnesium peroxide in the reaction mass is ca. 37%, 100 mg of the reaction mass contains 37 mg of magnesium peroxide, which corresponds to 0.66 mmol of magnesium peroxide. Therefore, 0.66 mmol (= 22.35 mg) of hydrogen peroxide is formed upon dissolution of 100 mg of the reaction mass.
It is to be noted that hydrogen peroxide itself rapidly degrades both in tissues of first contact and blood due to the presence of catalase in these environments. Catalase is an iron-containing enzyme present in blood and many tissues. Its biological role is to scavenge the hydrogen peroxide that is formed as a by-product in many normal metabolic processes.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.