Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Link to relevant study record(s)

Referenceopen allclose all

Endpoint:
basic toxicokinetics in vitro / ex vivo
Type of information:
experimental study
Adequacy of study:
key study
Study period:
1992-05-12 to 2000-02-17
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
test procedure in accordance with generally accepted scientific standards and described in sufficient detail
Objective of study:
metabolism
Qualifier:
no guideline followed
Principles of method if other than guideline:
The study was conducted according to a protocol approved by the sponsor, entitled: Protocol for a study on the in vitro hydrolysis of L-lactate esters by rat nasal olfactory epithelium homogenate (protocol P 352143). The esters were incubated with rat nasal olfactory epithelium homogenate at pH 7.0 and 37°C. The amount of liberated L-lactic acid (buffered) was quantified at a series of time points, from which the initial rate of hydrolysis was estimated. Using a concentration range of 0.05-3.2 mM, the enzyme kinetic parameters Km and Vmax were calculated.
GLP compliance:
yes (incl. QA statement)
Radiolabelling:
no
Species:
other: rat nasal olfactory epithelium homogenate
Strain:
Wistar
Sex:
male
Details on test animals or test system and environmental conditions:
Animals and maintenance:
Male Wistar rats (Crl:(WI)WU.BR), about 10 weeks old on arrival, were obtained from Charles River Wiga GmbH, Sulzfeld, Germany. Upon arrival the rats were checked for overt signs of ill health and anomalies. After an acclimatisation period of at least 6 days, ten healthy rats were used for the preparation of the homogenates. From their arrival until the day of sacrifice, the rats were housed in suspended, stainless steel cages, fitted with wire mesh floor and front. The rats were kept in a single room thermostatically maintained at a temperature of 22 ± 3 °C and a relative humidity of at least 30%, and exposed to 12 hours fluorescent lighting and 12 hours dark. From their arrival until the day before sacrifice, the rats were fed the Institute's cereal based, powdered stock diet for rats, mice and hamsters. Tap-water was supplied in glass bottles and was available at all times.

Preparation of homogenate:
The rats were exsanguinated whilst under Nembutal anaesthesia. The head of each rat was removed from the carcass and deskinned, and the skull was split in halves sagitally, exposing the nasal cavity, using a surgical scalpel. Both halves of the skull were placed on ice. Subsequently, the olfactory and respiratory portions of the nasal septum were collected separately from both skull halves and kept on ice until further processing. The olfactory epithelium of all rats was pooled. Immediately after removal, tissues were frozen in liquid nitrogen and stored at -80 °C. Homogenates of olfactory epithelium were prepared by homogenisation with 3 volumes of 0.01 M Tris HCl/0.14 M KCl pH 7.0 with a Potter-Elvehjem tissue homogenizer. After centrifugation at 10000 × g, the supernatant was stored at -80 °C. The protein concentration of the homogenate was measured using the Bradford method. Esterase activity of the homogenate was measured with p-nitro-phenylbutyrate according to the method described by Bogdanffy et al.: 100 µM p-nitro-phenylbutyrate and a suitable amount of nasal epithelium were incubated in 0.1 M phosphate buffer pH 7.8 at 25 °C in a total volume of 1 mL. The rate of hydrolysis was measured spectrophotometrically at 400 nm. Enzymatic activity was expressed in µmol per min per mg protein using a molar extinction coefficient of 17700 per M per cm.
Route of administration:
other: incubation with rat nasal olfactory epithelium homogenate
Vehicle:
acetone
Details on exposure:
Methyl (S)-lactate was incubated with 51 µg of nasal epithelium protein and 0.05 M phosphate buffer pH 7.0 in a total volume of 1 mL at 37 °C for 5, 10, 20, 40, 60 and 120 minutes. Methyl (S)-lactate was added to the incubation mixture in 20 µL acetone to give final concentrations of 50, 100, 200, 400 and 800 µM. Because esterase activity of the nasal epithelium homogenate towards methyl lactate was rather low, methyl (S)-lactate was incubated with additional concentrations of 1.6 and 3.2 mM.
Duration and frequency of treatment / exposure:
Single application. Incubation for 5, 10, 20, 40, 60 and 120 minutes
Dose / conc.:
50 other: µM
Dose / conc.:
100 other: µM
Dose / conc.:
200 other: µM
Dose / conc.:
400 other: µM
Dose / conc.:
800 other: µM
Dose / conc.:
1 600 other: µM
Dose / conc.:
3 200 other: µM
No. of animals per sex per dose / concentration:
51 µg of nasal epithelium protein per dose.
Control animals:
other: Chemical hydrolysis was measured in incubations without epithelium homogenate at all concentrations after 120 minutes.
Positive control reference chemical:
L-lactate
Details on study design:
n.a.
Details on dosing and sampling:
Incubations:
Methyl (S)-lactate was incubated with 51 µg of nasal epithelium protein and 0.05 M phosphate buffer pH 7.0 in a total volume of 1 mL at 37 °C for 5, 10, 20, 40, 60 and 120 minutes. Methyl (S)-lactate was added to the incubation mixture in 20 µL acetone to give final concentrations of 50, 100, 200, 400 and 800 µM. Because esterase activity of the nasal epithelium homogenate towards methyl lactate was rather low, methyl (S)-lactate was incubated with additional concentrations of 1.6 and 3.2 mM. The reaction was terminated by addition of 3 mL ethanol and cooling of the incubation mixture to -25 °C for a minimum of 20 minutes. Subsequently, the tubes were centrifuged for 7 minutes at 2500 x g. After decantation into new tubes, the supernatant was evaporated to dryness with nitrogen and stored at -25 °C until analysis.
Chemical hydrolysis was measured in incubations without epithelium homogenate at all concentrations after 120 minutes. The amounts of L-lactic acid at the start of the incubation studies (t=0) (blanks) were determined by addition of 20 µL of acetone to the incubaton mixtures.
The metabolism of L-lactic acid (buffered) by nasal epithelium homogenate was investigated by incubating 217.6 nmol of L-lactate with 382.5 µg of nasal epithelium protein for 5 minutes at 37 °C.

L-lactic acid assay:
The total amount of L-lactic acid formed was quantified with the "Boeringher test for the enzymatic determination of L-lactic acid in foodstuffs and other materials". The test principle is as follows:

LDH
L-lactate + NAD+ ↔ Pyruvate + NADH + H+

GPT
Pyruvate + L-Glutamate ↔ L-Alanin + α-Ketoglutarate

The amount of NADH produced was determined spectrophotometrically at 340 nm. The NADH production of samples was compared with NADH production by various amounts of the standard (L-lactate). Because of the high rate of chemical hydrolysis of the lactate esters at pH 10, a 0.224 M phosphate buffer pH 7.4 containing 0.02% sodium azide as preservative was used instead of teh glycylglycine buffer. The absorbance of the incubation mixture after addition of the L-lactate dehydrogenase solution was measured after 1 hour. The absorbances were measured using demiwater as reference.
Statistics:
Calculations:
The amount of L-lactic acid formed during the incubations was calulated from a standard curve obtained from the absorbance values of various amounts of L-lactate standard. The standard curve was fitted with the model:
absorbance = a + b (amount L-lactic acid) + c (amount L-lactic acid)²
The detection limit of the L-lactic acid assay was determined to be 4 nmol (absorbance 0.020-0.025). The initial enzymatic rates of hydrolysis at the various concentrations of L-lactate esters were caluclated by fitting the amount of L-lactic acid formed at the various time points with the model:
liberated L-lactic acid = a + b (time) + c (time)²
and subsequent calculation of the slope of the fitted curve at the timepoint with the first detectable amount of L-lactic acid. When L-lactic acid was only detectable after 20 minutes or more, the curve was fitted included with the zero timepoint and the slope of the curve was calculated at t= 0. The initial hydrolysis rates were corrected for chemical hydrolysis and expressed as nmol per min per mg protein. Chemical hydrolysis was assumed to be a linear chemical process.
Kinetic parameters (Km and Vmax) were calculated using the Michaelis Menten equation. The calculation program "EZ-FIT" was used for this purpose.
Preliminary studies:
The protein content of the nasal epithelium homogenate was determined to be 15.3 mg per mL. The increase of absorbance towards p-nitro-phenylbutyrate of the nasal epithelium homogenate using 15.3 µg of protein was 0.191 ± 0.006 (n= 2), corresponding to an esterase acitivity of 0.71 ± 0.02 µmol per min per mg of epithelial protein.
The rate of chemical hydrolysis was investigated with methyl (S)-lactate in 0.05 M phosphate buffer pH 7.0 at 37 °C. Methyl (S)-lactate was incubated in a concentration of 500 µM for 5 and 20 minutes, and 1, 3 and 19.5 hours. The rate of chemical hydrolysis was very low. Liberated L-lactic was detetced only after 19.5 hours (6.1 nmol corresponding to 1.2% of the total amount of ester).

Metabolism of L-lactic acid (buffered) was not observed when L-lactic acid was incubated with nasal epithelium homogenate. The use of inhibitors to prevent enzymatic oxidation to pyruvate was therefore not necessary.

The recovery of L-lactic acid, as added to the incubation mixture in the absence of esters, was 91-93%.

Using a set of enzymatic incubations of ethyl-S-lactate without addition of buffer, the effect on the pH was measured as a funtion of incubation time. At the last timepoint (150 min), the amount of protons detected was approximately 20-fold less than the amount of lactic acid produced. An initial lag phase was observed in the detection of protons: an increase in proton concentration was only measured after 60 minutes of incubation. This lag phase cannot be completely explained by the difference between rate of appearance of lactic acid and protons (as a consequence of the buffer present in the nasal epithelium homogenate), since the slope of the two curves after this lag phase still differed considerably.
Metabolites identified:
yes
Details on metabolites:
L-Lactic acid is formed by enzymatic hydrolysis of methyl (S)-lactate by carboxylesterase present in rat nasal olfactory tissue.
Kinetic parameters of the enzymatic hydrolysis of methyl (S)-lactate by rat olfactory epithelium homogenate were not established as even at the highest concentration of 3.2 mM the rate of formation of L-Lactic acid remained linear. This indicates that the enzyme carboxyylesterase was not yet saturated and enzyme saturation is necessary for estimation of kinetic parameters.
Conclusions:
In an in vitro study to assess the hydrolysis of L-lactate esters by rat nasal olfactory epithelium homogenate the following observations were made:
L-Lactic acid is formed by enzymatic hydrolysis of methyl (S)-lactate by carboxylesterase present in rat nasal olfactory tissue. Kinetic parameters of the enzymatic hydrolysis of methyl (S)-lactate by rat olfactory epithelium homogenate were not established as even at the highest concentration of 3.2 mM the rate of formation of L-Lactic acid remained linear. This indicates that the enzyme carboxylesterase was not yet saturated and enzyme saturation is necessary for estimation of kinetic parameters. In general, the olfactory epithelium carboxylesterase showed increasing capacity (increasing Vmax) and affinity (decreasing Km) towards L-lactate esters with increasing molecular weight of the alkyl group. From a large discrepancy between the amount of lactic acid formed and the increase in proton concentration even in very poorly buffered systems it is suggested that a certain defence against acidification exists.
Executive summary:

The hydrolysis of methyl (S)-lactate by rat nasal olfactory epithelium homogenate was investigated. The ester was incubated with rat (male, Wistar) olfactory epithelium at pH 7.0 and 37 °C. L-Lactic acid is formed by enzymatic hydrolysis of methyl (S)-lactate by carboxylesterase present in rat nasal olfactory tissue. Kinetic parameters of the enzymatic hydrolysis of methyl (S)-lactate by rat olfactory epithelium homogenate were not established as even at the highest concentration of 3.2 mM the rate of formation of L-Lactic acid remained linear. This indicates that the enzyme carboxylesterase was not yet saturated and enzyme saturation is necessary for the estimation of kinetic parameters. In general, the olfactory epithelium carboxylesterase showed increasing capacity (increasing Vmax) and affinity (decreasing Km) towards L-lactate esters with increasing molecular weight of the alkyl group. From a large discrepancy between the amount of lactic acid formed and the increase in proton concentration even in very poorly buffered systems it is suggested that a certain defence against acidification exists.

Since the pKa value of lactic acid is 3.80, the formation of lactic acid will (in non-buffered systems) directly result in acidification of the solution. However, even in poorly buffered systems (non-buffered incubation mix) a large discrepancy between the amount of lactic acid formed an the increase in proton concentration is observed. This suggests that a certain defence against acidification exists, and that in vivo, only high doses and/or prolonged exposure will result in acidification of tissues.

Endpoint:
basic toxicokinetics in vitro / ex vivo
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
supporting study
Justification for type of information:
For details and justification of read-across please refer to the read-across report attached to OUCLID section 13.
Reason / purpose for cross-reference:
read-across source
Preliminary studies:
The protein content of the nasal epithelium homogenate was determined to be 15.3 mg per mL. The increase of absorbance towards p-nitro-phenylbutyrate of the nasal epithelium homogenate using 15.3 µg of protein was 0.191 ± 0.006 (n= 2), corresponding to an esterase activity of 0.71 ± 0.02 µmol per min per mg of epithelial protein. The rate of chemical hydrolysis was investigated with the three smaller lactate esters methyl, ethyl and isopropyl-S-lactate in 0.05 M phosphate buffer pH 7.0 at 37 °C. The lactate esters were incubated in a concentration of 500 µM for 5 and 20 minutes, and 1, 3 and 19.5 hours. The rate of chemical hydrolysis was very low. Liberated L-lactic acid was only detected for methyl lactate and after 19.5 hours (6.1 mol corresponding to 1.2% of the total amount of ester). Metabolism of L-lactic acid (buffered) was not observed when L-lactic acid was incubated with nasal epithelium homogenate. The use of inhibitors to prevent enzymatic oxidation to pyruvate was therefore not necessary. The recovery of L-lactic acid, as added to the incubation mixture in the absence of esters, was 91-93%. Using a set of enzymatic incubations of ethyl-S-lactate without addition of buffer, the effect on the pH was measured as a function of incubation time. At the last time point (150 min), the amount of protons detected was approximately 20-fold less than the amount of lactic acid produced. An initial lag phase was observed in the detection of protons: an increase in proton concentration was only measured after 60 minutes of incubation. This lag phase cannot be completely explained by the difference between rate of appearance of lactic acid and protons (as a consequence of the buffer present in the nasal epithelium homogenate), since the slope of the two curves after this lag phase still differed considerably.
Type:
metabolism
Results:
The following kinetic parameters of the enzymatic hydrolysis of Butyl-S-lactate by rat olfactory epithelium homogenate: KM: 0.6 mM; Vmax: 370 nmol/min/mg protein
Metabolites identified:
yes
Details on metabolites:
L-lactic acid is formed by enzymatic hydrolysis of Butyl-S-lactate by carboxylesterase present in rat nasal olfactory tissue.

Kinetic parameters of the enzymatic hydrolysis of Butyl-S-lactate by rat olfactory epithelium homogenate were: Km = 0.6 mM and Vmax = 370 nmol/min/mg protein. The calculated half-life of the enzymatic hydrolysis of n-butyl lactate is 0.001 min or 0.067 sec.

Conclusions:
In an in vitro study to assess the hydrolysis of L-lactate esters by rat nasal olfactory epithelium homogenate the following observations were made:
Lactic acid is formed by enzymatic hydrolysis of Butyl-S-lactate by carboxylesterase present in rat nasal olfactory tissue. Kinetic parameters of the enzymatic hydrolysis of Butyl-S-lactate by rat olfactory epithelium homogenate were: Km = 0.6 mM and Vmax = 370 nmol/min/mg protein. In general, the olfactory epithelium carboxylesterase showed increasing capacity (increasing Vmax) and affinity (decreasing Km) towards L-lactate esters with increasing molecular weight of the alkyl group. From a large discrepancy between the amount of lactic acid formed and the increase in proton concentration even in very poorly buffered systems it is suggested that a certain defence against acidification exists.
Executive summary:

The hydrolysis of Butyl-S-lactate by rat nasal olfactory epithelium homogenate was investigated in vitro. The ester was incubated with male Wistar rat olfactory epithelium at pH 7.0 and 37 °C. The amount of liberated L-lactic acid (buffered) was quantified at a series of time points, from which the initial rate of hydrolysis was estimated. Using a concentration range of 0.05–0.8 mM, the enzyme kinetic parameters were calculated to be Km = 0.6 mM and Vmax = 370 nmol/min/mg protein. Based on these values, the calculated half-life of the enzymatic hydrolysis of Butyl-S-lactate is 0.001 min or 0.067 sec.

Seven other lactate esters were also tested. In general, the olfactory epithelium carboxylesterase showed increasing capacity (increasing Vmax) and affinity (decreasing Km) towards L-lactate esters with increasing molecular weight of the alkyl group.

Since the pKa value of lactic acid is 3.80, the formation of lactic acid will (in non-buffered systems) directly result in acidification of the solution. However, even in poorly buffered systems (non-buffered incubation mix) a large discrepancy between the amount of lactic acid formed and the increase in proton concentration is observed. This suggest that a certain defence against acidification exists, and that in vivo, only high doses and/or prolonged exposure will result in acidification of tissues.

This information is used in a read-across approach in the assessment of the target substance. For details and justification of read-across please refer to the read-across report attached to IUCLID section 13.

Endpoint:
basic toxicokinetics in vitro / ex vivo
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
supporting study
Justification for type of information:
For details and justification of read-across please refer to the read-across report attached to IUCLID section 13.
Reason / purpose for cross-reference:
read-across source
Preliminary studies:
The protein content of the nasal epithelium homogenate was determined to be 15.3 mg per mL. The increase of absorbance towards p-nitro-phenylbutyrate of the nasal epithelium homogenate using 15.3 µg of protein was 0.191 ± 0.006 (n = 2), corresponding to an esterase acitivity of 0.71 ± 0.02 µmol per min per mg of epithelial protein.
The rate of chemical hydrolysis was investigated with ethyl (S)-lactate in 0.05 M phosphate buffer pH 7.0 at 37 °C. Ethyl (S)-lactate was incubated in a concentration of 500 µM for 5 and 20 minutes, and 1, 3 and 19.5 hours. The rate of chemical hydrolysis was very low. Liberated L-lactic acid could not be detected. The additonal 2-hours incubations with concentrations of ethyl (S)-lactate of 0.8, 1.6 and 3.2 mM showed detectable chemical hydrolysis at the highest concentration tested only. The rate of chemical hydrolysis, measured as the rate of lactic acid formation, was 0.04 nmol/min at a concentration of 3.2 mM ethyl (S)-lactate.
Metabolism of L-lactic acid (buffered) was not observed when L-lactic acid was incubated with nasal epithelium homogenate. The use of inhibitors to prevent enzymatic oxidation to pyruvate was therefore not necessary.
The recovery of L-lactic acid, as added to the incubation mixture in the absence of esters, was 91–93 %.
Using a set of enzymatic incubations of ethyl (S)-lactate without addition of buffer, the effect on the pH was measured as a funtion of incubation time. At the last timepoint (150 min), the amount of protons detected was approximately 20-fold less than the amount of lactic acid produced. An initial lag phase was observed in the detection of protons: an increase in proton concentration was only measured after 60 minutes of incubation. This lag phase cannot be completely explained by the difference between rate of appearance of lactic acid and protons (as a consequence of the buffer present in the nasal epithelium homogenate), since the slope of the two curves after this lag phase still differed considerably.
Type:
metabolism
Results:
The following kinetic parameters of the enzymatic hydrolysis of ethyl (S)-lactate by rat olfactory epithelium homogenate: KM: 1.1 mM; Vmax: 170 nmol/min/mg protein
Metabolites identified:
yes
Details on metabolites:
L-lactic acid is formed by enzymatic hydrolysis of ethyl (S)-lactate by carboxylesterase present in rat nasal olfactory tissue.
Kinetic parameters of the enzymatic hydrolysis of ethyl (S)-lactate by rat olfactory epithelium homogenate were: Km = 1.1 mM and Vmax = 170 nmol/min/mg protein.

Kinetic parameters of the enzymatic hydrolysis of ethyl (S)-lactate by rat olfactory epithelium homogenate were: Km = 1.1 mM and Vmax = 170 nmol/min/mg protein. The calculated half-life of the enzymatic hydrolysis of ethyl (S)-lactate is 0.045 min or 0.27 sec.

Conclusions:
In an in vitro study to assess the hydrolysis of L-lactate esters by rat nasal olfactory epithelium homogenate the following observations were made:
Lactic acid is formed by enzymatic hydrolysis of ethyl (S)-lactate by carboxylesterase present in rat nasal olfactory tissue.
Kinetic parameters of the enzymatic hydrolysis of ethyl (S)-lactate by rat olfactory epithelium homogenate were: Km = 1.1 mM and Vmax = 170 nmol/min/mg protein. In general, the olfactory epithelium carboxylesterase showed increasing capacity (increasing Vmax) and affinity (decreasing Km) towards L-lactate esters with increasing molecular weight of the alkyl group. From a large discrepancy between the amount of lactic acid formed and the increase in proton concentration even in very poorly buffered systems it is suggested that a certain defence against acidification exisits.
Executive summary:

The hydrolysis of ethyl (S)-lactate by rat nasal olfactory epithelium homogenate was investigated. The ester was incubated with rat (male, Wistar) olfactory epithelium at pH 7.0 and 37 °C. The amount of liberated L-lactic acid (buffered) was quantified at a series of time points, from which the initial rat of hydrolysis was estimated. Using a concentration range of 0.05–3.2 mM, the enzyme kinetic parametes were calculated to be Km = 1.1 mM and Vmax = 170 nmol/min/mg protein. The calculated half-life of the enzymatic hydrolysis is 0.045 min or 0.27 sec.

Seven other L-lactate esters were also tested. In general, the olfactory epithelium carboxylesterase showed increasing capacity (increasing Vmax) and afinity (decreasing Km) towards L-lactate esters with increasing molecular weight of the alkyl group.

Since the pKa value of lactic acid is 3.80, the formation of lactic acid will (in non-buffered systems) directly result in acidification of the solution. However, even in poorly buffered systems (non-buffered incubation mix) a large discrepancy between the amount of lactic acid formed an the increase in proton concentration is observed. This suggests that a certain defence against acidification exists, and that in vivo, only high doses and/or prolonged exposure will result in acidification of tissues.

This information is used in a read-across approach in the assessment of the target substance. For details and justification of read-across please refer to the read-across report attached to IUCLID section 13.

Endpoint:
basic toxicokinetics in vitro / ex vivo
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
supporting study
Justification for type of information:
For details and justification of read-across please refer to the read-across report attached to IUCLID section 13.
Reason / purpose for cross-reference:
read-across source
Preliminary studies:
The protein content of the nasal epithelium homogenate was determined to be 15.3 mg per mL. The increase of absorbance towards p-nitro-phenylbutyrate of the nasal epithelium homogenate using 15.3 µg of protein was 0.191 ± 0.006 (n= 2), corresponding to an esterase activity of 0.71 ± 0.02 µmol per min per mg of epithelial protein. The rate of chemical hydrolysis was investigated with the three smaller lactate esters methyl, ethyl and isopropyl-S-lactate in 0.05 M phosphate buffer pH 7.0 at 37 °C. The lactate esters were incubated at a concentration of 500 µM for 5 and 20 minutes, and 1, 3 and 19.5 hours. The rate of chemical hydrolysis was very low. Liberated L-lactic acid was only detected for methyl lactate and after 19.5 hours (6.1 mol corresponding to 1.2 % of the total amount of ester). Metabolism of L-lactic acid (buffered) was not observed when L-lactic acid was incubated with nasal epithelium homogenate. The use of inhibitors to prevent enzymatic oxidation to pyruvate was therefore not necessary. The recovery of L-lactic acid, as added to the incubation mixture in the absence of esters, was 91-93%. Using a set of enzymatic incubations of ethyl-S-lactate without addition of buffer, the effect on the pH was measured as a function of incubation time. At the last time point (150 min), the amount of protons detected was approximately 20-fold less than the amount of lactic acid produced. An initial lag phase was observed in the detection of protons: an increase in proton concentration was only measured after 60 minutes of incubation. This lag phase cannot be completely explained by the difference between rate of appearance of lactic acid and protons (as a consequence of the buffer present in the nasal epithelium homogenate), since the slope of the two curves after this lag phase still differed considerably.
Type:
metabolism
Results:
The following kinetic parameters of the enzymatic hydrolysis of ethylhexyl-S-lactate by rat olfactory epithelium homogenate: KM: 0.17 mM; Vmax: 420 nmol/min/mg protein.
Metabolites identified:
yes
Details on metabolites:
L-lactic acid is formed by enzymatic hydrolysis of ethylhexyl-S-lactate by carboxylesterase present in rat nasal olfactory tissue.

Kinetic parameters of the enzymatic hydrolysis of ethylhexyl-S-lactate by rat olfactory epithelium homogenate were: Km = 0.17 mM and Vmax = 420 nmol/min/mg protein.

Conclusions:
In an in vitro study to assess the hydrolysis of L-lactate esters by rat nasal olfactory epitheliun homogenate the following observations were made:
Lactic acid is formed by enzymatic hydrolysis of ethylhexyl-S-lactate by carboxylesterase present in rat nasal olfactory tissue. Kinetic parameters of the enzymatic hydrolysis of ethylhexyl-S-lactate by rat olfactory epithelium homogenate were: Km = 0.17 mM and Vmax = 420 nmol/min/mg protein. In general, the olfactory epithelium carboxylesterase showed increasing capacity (increasing Vmax) and affinity (decreasing Km) towards L-lactate esters with increasing molecular weight of the alkyl group. From a large discrepancy between the amount of lactic acid formed and the increase in proton concentration even in very poorly buffered systems it is suggested that a certain defense against acidification exists.
Executive summary:

The hydrolysis of ethylhexyl-S-lactate by rat nasal olfactory epithelium homogenate was investigated in vitro. The ester was incubated with male Wistar rat olfactory epithelium at pH 7.0 and 37 °C. The amount of liberated L-lactic acid (buffered) was quantified at a series of time points, from which the initial rate of hydrolysis was estimated. Using a concentration range of 0.05–0.8 mM, the enzyme kinetic parameters were calculated to be Km = 0.17 mM and Vmax = 420 nmol/min/mg protein. Based on these values, the calculated half-life of the enzymatic hydrolysis of ethylhexyl-S-lactate is 0.0004 min or 0.024 sec.

Seven other lactate esters were also tested. In general, the olfactory epithelium carboxylesterase showed increasing capacity (increasing Vmax) and affinity (decreasing Km) towards L-lactate esters with increasing molecular weight of the alkyl group.

Since the pKa value of lactic acid is 3.80, the formation of lactic acid will (in non-buffered systems) directly result in acidification of the solution. However, even in poorly buffered systems (non-buffered incubation mix) a large discrepancy between the amount of lactic acid formed and the increase in proton concentration is observed. This suggest that a certain defense against acidification exists, and that in vivo, only high doses and/or prolonged exposure will result in acidification of tissues.

This information is used in a read-across approach in the assessment of the target substance. For details and justification of read-across please refer to the read-across report attached to IUCLID section 13.

Endpoint:
basic toxicokinetics, other
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
supporting study
Justification for type of information:
For details and justification of read-across please refer to the read-across report attached to IUCLID section 13.
Reason / purpose for cross-reference:
read-across source

The role of lactic acid in metabolism has kept researchers occupied for a long time. For many years, lactic acid was considered a dead-end waste product of the glycolysis, the conversion of glucose into pyruvate (producing a relatively small amount of ATP), in the absence of oxygen. Recently, the role of lactic acid in metabolism was reconsidered, and L-lactate is considered as a functional metabolite and mammalian fuel. It was observed that lactate can be transferred from its site of production (cytosol) to neighbouring cells and other organs, as well as intracellularly, where its oxidation or continued metabolism can occur. This "lactate shuttle" results in the distribution of lactic acid to other cells, where it is directly oxidised, re-converted back to pyruvate or glucose, allowing the process of glycolysis to restart and ATP provision maintained.

Conclusions:
In the evaluation of the use of lactic acid as the active substance in biocidal products, the natural occurrence of lactic acid in human food and the human body, as well as the role of the compound in human metabolism and physiology should be taken into account. This means that, when the risk for its use in biocidal products is assessed, the natural exposure to lactic acid in food and via endogenous sources, as well as exposure via the use of lactic acid as a food additive should be considered.
In the present report it is concluded that lactic acid can no longer be considered as a “dead-end” waste product of human metabolism, but should instead be seen to play an important role in cellular, regional, and whole body metabolism. Lactic acid has been detected in blood, several other body fluids and tissues. Concentrations of lactic acid increase significantly during intense exercise. At rest, blood concentrations have been reported of 1-1.5 mMol/L (90.1-135.12 mg/L), which can increase up to 10 mMol/L (900.8 mg/L) during exercise.
External human exposure to lactic acid can occur via its natural presence in food, for example in fruit, vegetables, sour milk products, and fermented products such as sauerkraut, yogurt and beer. Based on the available information on concentrations of lactic acid in some of these products, an estimate of the daily consumption of lactic acid due to its natural presence in food was made using the ‘FAO/WHO standard European diet’. A (minimum) daily intake of 1.175 g/person/day was calculated using the available information.
Another source of external exposure is its use as food additive; as such it is authorized in Europe (E270) and the United States (generally recognized as safe = GRAS). A daily intake of 1.65-2.76 g/person/day was estimated using the “Per Capita times 10” method, based on the amount of lactic acid put onto the market (EU and USA) as a food additive by Purac.
Based on the high levels of lactic acid in the human body and in human food, and its use as food additive, the evaluation of the human health effects of lactic acid should first and for all be based on a comparison of this background exposure and the potential contribution of lactic acid in biocidal products to these levels. Therefore, a risk assessment should not be based on the comparison with effects of exposure, but on the comparison with the total daily intake of lactic acid via food, both naturally and as food additive, which was estimated to be 2.8 g/person/day. When the application of Purac’s products will not result in a systemic exposure that contributes substantially to the total systemic exposure, many of the standard human toxicological studies dealing with systemic effects are deemed superfluous.
Executive summary:

The natural occurrence of lactic acid in human food and the human body, as well as the role of the compound in human metabolism and physiology is of primary importance in the understanding of the metabolism and toxicology of lactic acid. This means that, in risk assessment, the natural exposure to lactic acid in food and via endogenous sources, as well as exposure via the use of lactic acid as a food additive should be considered.

In the present report it is concluded that lactic acid, in contrast to previously held belief, can no longer be considered as a “dead-end” waste product of human metabolism, but should instead be seen to play an important role in cellular, regional, and whole body metabolism. Lactic acid has been detected in blood, several other body fluids and tissues. Concentrations of lactic acid increase significantly during intense exercise. At rest, blood concentrations have been reported of 1-1.5 mMol/L (90.1-135.12 mg/L), which can increase up to 10 mMol/L (900.8 mg/L) during exercise.

External human exposure to lactic acid can occur via its natural presence in food, for example in fruit, vegetables, sour milk products, and fermented products such as sauerkraut, yogurt and beer. Based on the available information on concentrations of lactic acid in some of these products, an estimate of the daily consumption of lactic acid due to its natural presence in food was made using the ‘FAO/WHO standard European diet’. A (minimum) daily intake of 1.175 g/person/day was calculated using the available information.

Another source of external exposure is its use as food additive; as such it is authorized in Europe (E270) and the United States (generally recognized as safe = GRAS). A daily intake of 1.65-2.76 g/person/day was estimated using the “Per Capita times 10” method, based on the amount of lactic acid put onto the market (EU and USA) as a food additive by the registrant.

Based on the high levels of lactic acid in the human body and in human food, and its use as food additive, the evaluation of the human health effects of lactic acid should first and for all be based on a comparison of this background exposure and the potential contribution of lactic acid in biocidal products to these levels. Therefore, a risk assessment should not be based on the comparison with effects of exposure, but on the comparison with the total daily intake of lactic acid via food, both naturally and as food additive, which was estimated to be 2.8 g/person/day. When the application of Purac’s products will not result in a systemic exposure that contributes substantially to the total systemic exposure, many of the standard human toxicological studies dealing with systemic effects are deemed superfluous.

This information is used in a read-across approach in the assessment of the target substance. For details and justification of read-across please refer to the read-across report attached to IUCLID section 13.

Description of key information

Methyl (S)-lactate, is hydrolysed (as all lactate esters) in vivo into lactic acid and methanol.

Key value for chemical safety assessment

Additional information

Methyl (S)-lactate, as all lactate esters, is hydrolyzed in vivo into lactic acid and methanol.

Lactic acid is a ubiquitous and essential biological molecule not only in humans and other mammals, but also in most if not all vertebrate and invertebrate animals, as well as in many microorganisms. Therefore the biokinetics, metabolism and distribution of lactic acid have to be considered in the context of its normal biochemistry; lactic acid is of minor toxicological concern given its ubitquitousness and function as a common metabolite.

Methanol is an alcohol that is metabolized by the normal alcohol metabolism pathways.