Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 915-748-1 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Boiling point
Administrative data
Link to relevant study record(s)
- Endpoint:
- boiling point
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 2015-06-12 to 2015-06-25
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 103 (Boiling point/boiling range)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method A.2 (Boiling Temperature)
- Deviations:
- no
- GLP compliance:
- no
- Other quality assurance:
- ISO/IEC 17025 (General requirements for the competence of testing and calibration laboratories)
- Type of method:
- differential scanning calorimetry
- Key result
- Decomposition:
- yes
- Decomp. temp.:
- 267 °C
- Remarks on result:
- other: No normal boiling point was found. Partial boiling starts at around 267°C, probably already associated with decomposition
- Conclusions:
- The substance was observed to undergoes decomposition from about 267°C using a relevant test method. The result is considered to be reliable.
Reference
Preliminary thermogravimetric measurement:
A preliminary thermogravimetric measurement was performed over a temperature range from room temperature to 600°C. The mass loss occurs in one step, reaching a maximum at 278 °C. Up to 600°C a small dark residue remained in the crucible. The remaining residue shows that pure boiling does not take place (see attached TG curve).
DSC measurements:
The DSC measurements were performed twice. To determine a possible boiling point more precisely a crucible lid with a hole of 50 μm diameter was used in the measurements. The small hole causes the generation of a defined atmosphere at constant pressure inside the
crucible and allows measurements at near equilibrium conditions, thus preventing evaporation of the test material before reaching the boiling point.
Upon further heating a sharp but noisy endothermic peak with a peak maximum temperature at 289°C and an extrapolated onset temperature of 266/267°C was registered. Reweighing after the measurement the sample had lost approx. 94 % of its mass.
The peak shape and the remaining residue demonstrate that the recorded reaction most probably represents simultaneous boiling and decomposition (See attached DSC curve).
Description of key information
Boiling point: decomposition without boiling from about 267°C at 998.9 hPa (OECD 103)
Key value for chemical safety assessment
Additional information
The boiling point of the substance has been determined using Differential Scanning Calorimetry (DSC) in accordance with OECD 103 and in compliance with a known quality system (ISO 17025). The substance was observed to undergo thermal decomposition from about 267°C.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
