Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 232-623-0 | CAS number: 9001-66-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Biodegradation in water: screening tests
Administrative data
- Endpoint:
- biodegradation in water: ready biodegradability
- Data waiving:
- study scientifically not necessary / other information available
- Justification for data waiving:
- other:
- Justification for type of information:
- Enzymes are found in every living organism as an essential component of the digestive systems, and as a key tool in metabolism by breaking down proteins, carbohydrates and lipids and as such, they are the basis for all life. Enzymes are proteins, hydrophilic and readily biodegradable. In nature, they are involved at any level of the food chain and in the microbial biodegradation.
For more than 40 years enzymes have been used in industrial processes to replace chemicals and reduce requirements for water and energy. Furthermore they are widely distributed in household articles for laundering.
The widespread use of enzymes has been followed by investigations relevant for ecotoxicity. Investigations are mainly performed to establish knowledge on short-term aquatic toxicity and on the rate of biodegradability of the enzyme.
The main results achieved indicate all enzyme classes are readily biodegradable. Degradation products are primarily peptides and amino acids, then carbon dioxide and water which cause no harm to nature [1]. OECD ready biodegradability tests have been conducted on lipases, cellulases and amylase with results (92 to 99% DOC removal) that surpass the OECD threshold limit of 70% DOC removal [2].
[1] Enzymes REACH Consortium (2010). Data waiving argumentation for technical enzymes.
[2] Bergman,A. and Broadmeadow,A. (1997) An overview of the safety evaluation of the Thermomyces lanuginosus xylanase enzyme (SP 628) and the Aspergillus aculeatus xylanase enzyme (SP 578). Food additives and contaminants 14, 389-398
Data source
Materials and methods
Results and discussion
Applicant's summary and conclusion
- Interpretation of results:
- readily biodegradable
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.