Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
Reaction mass of lithium sodium 5-amino-3-{[4-(2-{4-[(7-amino-1-hydroxy-3-sulfo-2-naphthyl)diazenyl]-2-sulfophenyl}vinyl)-3-sulfophenyl]diazenyl}-4-hydroxynaphthalene-2,7-disulfonate 2,2'-(methylimino)diethanol (1:1) and 3,3'-[vinylenebis[(3-sulpho-p-phenylene)azo]]bis[6-amino-4-hydroxynaphthalene-2-sulphonic] acid, lithium sodium salt, compound with 2,2'-(methylimino)diethanol and 3,3'-[vinylenebis[(3-sulpho-p-phenylene)azo]]bis[5-amino-4-hydroxynaphthalene-2,7-disulphonic] acid, lithium sodium salt, compound with 2,2'-(methylimino)diethanol
EC number: 916-916-7 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Bioaccumulation: aquatic / sediment
Administrative data
Link to relevant study record(s)
- Endpoint:
- bioaccumulation in aquatic species: fish
- Type of information:
- (Q)SAR
- Adequacy of study:
- key study
- Study period:
- 2013
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- 1. SOFTWARE
Individual model BCFBAF included in the Estimation Programs Interface (EPI) Suite.
2. MODEL (incl. version number)
BCFBAF v3.01 included in EPISuite v 4.11, 2000 - 2012
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
The CAS NUMBER/SMILES CODE was entered in the initial data entry screen. An experimental determined log Kow value was provided prior to estimation.
A searchable database of CAS RNs and corresponding SMILES structures are provided within the KOWWIN program. CAS RNs are available for approximately 112,000 organic chemicals. If a CAS RN is not available, a SMILES notation can be directly entered by the user. Alternatively, logKow values can be manually entered if available. The correction factors are linked to the presence of certain structural fragments or functional groups.
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
a. Defined endpoint: Bioconcentration factor (BCF). As a coefficient the logBCF is given without unit. The BCF can be given with L/kg wet wt.
b. Explicit algorithm (OECD Principle 2): The BCF is usually estimated from regression equations of the general form logBCF= a logKow + b, whereas a and b are empirically determined constants and Kow is the n octanol/water partition coefficient. Therefore, logBCF values for the non-ionic and ionics were plotted separately against the respective logKow values yielding a linear relationship for certain logKow ranges. Furthermore, compounds sharing certain structural features were identified resulting in residuals that were relatively consistent in sing and magnitude. On this basis several compound classes were identified that seemed amenable to derivation of correction factors.
Non-ionic compounds:
(i) For LogKow 1.0 to 7.0 the derived QSAR estimation equation is:
Log BCF= 0.6598 LogKow - 0.333 + Σ correction factors
(ii) For LogKow > 7.0 the derived QSAR estimation equation is:
Log BCF= -0.49 LogKow + 7.554 + Σ correction factors
(iii) For LogKow < 1.0 the derived QSAR estimation equation is:
All compounds with a logKow of less than 1.0 are assigned an estimated log BCF of 0.50.
Ionic compounds:
logKow < 5.0: log BCF= 0.50
logKow 5.0 to 6.0: log BCF= 0.75
logKow 6.0 to 7.0: log BCF= 1.75
logKow 7.0 to 9.0: log BCF= 1.00
logKow > 9.0: log BCF= 0.50
Ionic compounds include carboxylic acids, sulfonic acids and salts of sulfonic acids, and charged nitrogen compounds (nitrogen with a +5 valence such as quaternary ammonium compounds). All other compounds are classified as non-ionic.
Metals (tin and mercury), long chain alkyls and aromatic azo compounds require special treatment (see Meylan et al., 1999).
For ionic substances with long alkyl chains (≥ 11 carbons) a general log BCF of 1.85 was assigned by the program.
c. Applicability domain: The minimum and maximum values for molecular weight are the following:
Training Set Molecular Weight:
Minimum MW (Non-Ionic): 68.08
Maximum MW (Non-Ionic): 959.17
Average MW (Non-Ionic): 513.63
Minimum MW (Ionic): 102.13
Maximum MW (Ionic): 991.80
Average MW (Ionic): 546.97
The minimum and maximum values for logKow are the following:
Training Set logKow:
Minimum LogKow (Non-Ionic): -1.37
Maximum LogKow (Non-Ionic): 11.26
Minimum LogKow (Ionic): -6.50
Maximum LogKow (Ionic): 7.86
d. Statistics for goodness-of-fit:
number in dataset = 527
correlation coef (r^2) = 0.833
standard deviation = 0.502
average deviation = 0.382
e. Predictivity – Statistics obtained by external validation:
number in dataset = 158
correlation coef (r2) = 0.82
standard deviation = 0.59
average deviation = 0.46
f. Mechanistic interpretation: The BCF is an inherent property used to describe the accumulation of a substance dissolved in water by an aquatic organism. The BCFBAF program estimates BCF of an organic compound using the compound's log octanol-water partition coefficient (Kow).
Measured BCFs and other experimental details were collected and analysed to derive subsets of data on non-ionic, ionic, aromatic and azo compounds, tin and mercury compounds. Because of the deviation from rectilinearity, different models were developed for different log Kow ranges, and a set of 12 correction factors and rules were introduced to improve the accuracy of the BCF predictions.
g. The uncertainty of the prediction (OECD principle 4): The rules applied for estimating the BCF of 3,3'-[vinylenebis[(3-sulpho-p-phenylene)azo]]bis[5-amino-4-hydroxynaphthalene-2,7-disulphonic] acid, lithium sodium salt, compound with 2,2'-(methylimino)diethanol appear appropriate. An individual uncertainty for the investigated substance is the moleculat weight which exceeds the range of the training set.
h. The chemical and biological mechanisms according to the model underpinning the predicted result (OECD principle 5): Not applicable.
i. Limits of applicability: Model predictions may be highly uncertain for chemicals that have estimated log KOW values > 9. The model is not recommended at this time for chemicals that appreciably ionize, for pigments and dyes, or for perfluorinated substances.
5. APPLICABILITY DOMAIN
a. Descriptor Domains:
i. log Kow: With a log Kow value of 1.82, the substance is within the range of the training set (Non-Ionics: -1.37 – 11.26/ Ionics: -6.50 – 7.86).
ii. Molecular weight: With a molecular weight of 1030 g/mol the substance is not within the range of the training set (Non-Ionics 68.08 – 959.17/ Ionics 102.13 – 991.80).
iii. Structural fragment domain: Not applicable as the BCF is not estimated on the basis of fragments.
iv. Mechanism domain: No information available
v. Metabolic domain: Not relevant
b. Structural analogues: Not relevant as the BCF is not estimated based on structural fragments.
6. ADEQUACY OF THE RESULT
a. Regulatory purpose: The data may be used for regulatory purpose.
b. Approach for regulatory interpretation of the model result: If no experimental data are available, the estimated value may be used to fill data gaps needed for hazard and risk assessment.
c. Outcome: The estimation of the bioconcentration factor (BCF) yields a useful result for further evaluation.
d. Conclusion: The result is considered as useful for regulatory purposes. - Guideline:
- other: REACH guidance on QSARs R.6, May 2008
- Principles of method if other than guideline:
- Calculated with BCF Program BCFBAF v.3.01 included in the Estimation Programs Interface (EPI)-Suite. The estimation methodology is based on the chemical structure of an organic compound and its log octanol-water partition coefficient (log Kow). Depending on chemical structure, structural correction factors are applied.
- GLP compliance:
- no
- Radiolabelling:
- no
- Test organisms (species):
- other: none, estimated by calculation
- Type:
- BCF
- Value:
- 3.162 L/kg
- Basis:
- other: calculation
- Validity criteria fulfilled:
- not applicable
- Conclusions:
- The bioaccumulation factor of the substace was estimated to be 3.162 L/kg (wet-wt) using the BCFBAF model included in the EPI-Suite Programm concluding that the substance has a low potential to bioaccumulate in biota. Within the scope of the Persistency-Bioaccumulation-Toxicity (PBT)-Assessment, the substance fulfills not the B-criterion.
- Executive summary:
The bioaccumulation factor of the substace was estimated to be 3.162 L/kg (wet-wt) using the BCFBAF model included in the EPI-Suite Programm concluding that the substance has a low potential to bioaccumulate in biota. Within the scope of the Persistency-Bioaccumulation-Toxicity (PBT)-Assessment, the substance fulfills not the B-criterion.
The substance falls within the applicability domain described above and, therefore, the predicted value can be considered reliable.
- Endpoint:
- bioaccumulation in aquatic species: fish
- Type of information:
- (Q)SAR
- Adequacy of study:
- key study
- Study period:
- 2013
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- 1. SOFTWARE
Individual model BCFBAF included in the Estimation Programs Interface (EPI) Suite.
2. MODEL (incl. version number)
BCFBAF v3.01 included in EPISuite v 4.11, 2000 - 2012
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
The CAS NUMBER/SMILES CODE was entered in the initial data entry screen. An experimental determined log Kow value was provided prior to estimation.
A searchable database of CAS RNs and corresponding SMILES structures are provided within the KOWWIN program. CAS RNs are available for approximately 112,000 organic chemicals. If a CAS RN is not available, a SMILES notation can be directly entered by the user. Alternatively, logKow values can be manually entered if available. The correction factors are linked to the presence of certain structural fragments or functional groups.
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
a. Defined endpoint: Bioconcentration factor (BCF). As a coefficient the logBCF is given without unit. The BCF can be given with L/kg wet wt.
b. Explicit algorithm (OECD Principle 2): The BCF is usually estimated from regression equations of the general form logBCF= a logKow + b, whereas a and b are empirically determined constants and Kow is the n octanol/water partition coefficient. Therefore, logBCF values for the non-ionic and ionics were plotted separately against the respective logKow values yielding a linear relationship for certain logKow ranges. Furthermore, compounds sharing certain structural features were identified resulting in residuals that were relatively consistent in sing and magnitude. On this basis several compound classes were identified that seemed amenable to derivation of correction factors.
Non-ionic compounds:
(i) For LogKow 1.0 to 7.0 the derived QSAR estimation equation is:
Log BCF= 0.6598 LogKow - 0.333 + Σ correction factors
(ii) For LogKow > 7.0 the derived QSAR estimation equation is:
Log BCF= -0.49 LogKow + 7.554 + Σ correction factors
(iii) For LogKow < 1.0 the derived QSAR estimation equation is:
All compounds with a logKow of less than 1.0 are assigned an estimated log BCF of 0.50.
Ionic compounds:
logKow < 5.0: log BCF= 0.50
logKow 5.0 to 6.0: log BCF= 0.75
logKow 6.0 to 7.0: log BCF= 1.75
logKow 7.0 to 9.0: log BCF= 1.00
logKow > 9.0: log BCF= 0.50
Ionic compounds include carboxylic acids, sulfonic acids and salts of sulfonic acids, and charged nitrogen compounds (nitrogen with a +5 valence such as quaternary ammonium compounds). All other compounds are classified as non-ionic.
Metals (tin and mercury), long chain alkyls and aromatic azo compounds require special treatment (see Meylan et al., 1999).
For ionic substances with long alkyl chains (≥ 11 carbons) a general log BCF of 1.85 was assigned by the program.
c. Applicability domain: The minimum and maximum values for molecular weight are the following:
Training Set Molecular Weight:
Minimum MW (Non-Ionic): 68.08
Maximum MW (Non-Ionic): 959.17
Average MW (Non-Ionic): 513.63
Minimum MW (Ionic): 102.13
Maximum MW (Ionic): 991.80
Average MW (Ionic): 546.97
The minimum and maximum values for logKow are the following:
Training Set logKow:
Minimum LogKow (Non-Ionic): -1.37
Maximum LogKow (Non-Ionic): 11.26
Minimum LogKow (Ionic): -6.50
Maximum LogKow (Ionic): 7.86
d. Statistics for goodness-of-fit:
number in dataset = 527
correlation coef (r^2) = 0.833
standard deviation = 0.502
average deviation = 0.382
e. Predictivity – Statistics obtained by external validation:
number in dataset = 158
correlation coef (r2) = 0.82
standard deviation = 0.59
average deviation = 0.46
f. Mechanistic interpretation: The BCF is an inherent property used to describe the accumulation of a substance dissolved in water by an aquatic organism. The BCFBAF program estimates BCF of an organic compound using the compound's log octanol-water partition coefficient (Kow).
Measured BCFs and other experimental details were collected and analysed to derive subsets of data on non-ionic, ionic, aromatic and azo compounds, tin and mercury compounds. Because of the deviation from rectilinearity, different models were developed for different log Kow ranges, and a set of 12 correction factors and rules were introduced to improve the accuracy of the BCF predictions.
g. The uncertainty of the prediction (OECD principle 4): The rules applied for estimating the BCF of 3,3'-[vinylenebis[(3-sulpho-p-phenlyene)azo]]bis[6-amino-4-hydroxynaphthalene-2-sulphonic] acid, lithium sodium salt, compound with 2,2'-(methylimino)diethanol appear appropriate. An individual uncertainty for the investigated substance is not available.
h. The chemical and biological mechanisms according to the model underpinning the predicted result (OECD principle 5): Not applicable.
i. Limits of applicability: Model predictions may be highly uncertain for chemicals that have estimated log KOW values > 9. The model is not recommended at this time for chemicals that appreciably ionize, for pigments and dyes, or for perfluorinated substances.
5. APPLICABILITY DOMAIN
a. Descriptor Domains:
i. log Kow: With a log Kow value of 3.72, the substance is within the range of the training set (Non-Ionics: -1.37 – 11.26/ Ionics: -6.50 – 7.86).
ii. Molecular weight: With a molecular weight of 870 g/mol the substance is within the range of the training set (Non-Ionics 68.08 – 959.17/ Ionics 102.13 – 991.80).
iii. Structural fragment domain: Not applicable as the BCF is not estimated on the basis of fragments.
iv. Mechanism domain: No information available
v. Metabolic domain: Not relevant
b. Structural analogues: Not relevant as the BCF is not estimated based on structural fragments.
6. ADEQUACY OF THE RESULT
a. Regulatory purpose: The data may be used for regulatory purpose.
b. Approach for regulatory interpretation of the model result: If no experimental data are available, the estimated value may be used to fill data gaps needed for hazard and risk assessment.
c. Outcome: The estimation of the bioconcentration factor (BCF) yields a useful result for further evaluation.
d. Conclusion: The result is considered as useful for regulatory purposes. - Guideline:
- other: REACH guidance on QSARs R.6, May 2008
- Principles of method if other than guideline:
- Calculated with BCF Program BCFBAF v.3.01 included in the Estimation Programs Interface (EPI)-Suite. The estimation methodology is based on the chemical structure of an organic compound and its log octanol-water partition coefficient (log Kow). Depending on chemical structure, structural correction factors are applied.
- GLP compliance:
- no
- Radiolabelling:
- no
- Test organisms (species):
- other: none, estimated by calculation
- Type:
- BCF
- Value:
- 3.162 L/kg
- Basis:
- other: calculation
- Validity criteria fulfilled:
- not applicable
- Executive summary:
The bioaccumulation factor of the substace was estimated to be 3.162 L/kg (wet-wt) using the BCFBAF model included in the EPI-Suite Programm concluding that the substance has a low potential to bioaccumulate in biota. Within the scope of the Persistency-Bioaccumulation-Toxicity (PBT)-Assessment, the substance fulfills not the B-criterion.
The substance falls within the applicability domain described above and, therefore, the predicted value can be considered reliable.
- Endpoint:
- bioaccumulation in aquatic species: fish
- Type of information:
- (Q)SAR
- Adequacy of study:
- key study
- Study period:
- 2013
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- 1. SOFTWARE
Individual model BCFBAF included in the Estimation Programs Interface (EPI) Suite.
2. MODEL (incl. version number)
BCFBAF v3.01 included in EPISuite v 4.11, 2000 - 2012
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
The CAS NUMBER/SMILES CODE was entered in the initial data entry screen. An experimental determined log Kow value was provided prior to estimation.
A searchable database of CAS RNs and corresponding SMILES structures are provided within the KOWWIN program. CAS RNs are available for approximately 112,000 organic chemicals. If a CAS RN is not available, a SMILES notation can be directly entered by the user. Alternatively, logKow values can be manually entered if available. The correction factors are linked to the presence of certain structural fragments or functional groups.
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
a. Defined endpoint: Bioconcentration factor (BCF). As a coefficient the logBCF is given without unit. The BCF can be given with L/kg wet wt.
b. Explicit algorithm (OECD Principle 2): The BCF is usually estimated from regression equations of the general form logBCF= a logKow + b, whereas a and b are empirically determined constants and Kow is the n octanol/water partition coefficient. Therefore, logBCF values for the non-ionic and ionics were plotted separately against the respective logKow values yielding a linear relationship for certain logKow ranges. Furthermore, compounds sharing certain structural features were identified resulting in residuals that were relatively consistent in sing and magnitude. On this basis several compound classes were identified that seemed amenable to derivation of correction factors.
Non-ionic compounds:
(i) For LogKow 1.0 to 7.0 the derived QSAR estimation equation is:
Log BCF= 0.6598 LogKow - 0.333 + Σ correction factors
(ii) For LogKow > 7.0 the derived QSAR estimation equation is:
Log BCF= -0.49 LogKow + 7.554 + Σ correction factors
(iii) For LogKow < 1.0 the derived QSAR estimation equation is:
All compounds with a logKow of less than 1.0 are assigned an estimated log BCF of 0.50.
Ionic compounds:
logKow < 5.0: log BCF= 0.50
logKow 5.0 to 6.0: log BCF= 0.75
logKow 6.0 to 7.0: log BCF= 1.75
logKow 7.0 to 9.0: log BCF= 1.00
logKow > 9.0: log BCF= 0.50
Ionic compounds include carboxylic acids, sulfonic acids and salts of sulfonic acids, and charged nitrogen compounds (nitrogen with a +5 valence such as quaternary ammonium compounds). All other compounds are classified as non-ionic.
Metals (tin and mercury), long chain alkyls and aromatic azo compounds require special treatment (see Meylan et al., 1999).
For ionic substances with long alkyl chains (≥ 11 carbons) a general log BCF of 1.85 was assigned by the program.
c. Applicability domain: The minimum and maximum values for molecular weight are the following:
Training Set Molecular Weight:
Minimum MW (Non-Ionic): 68.08
Maximum MW (Non-Ionic): 959.17
Average MW (Non-Ionic): 513.63
Minimum MW (Ionic): 102.13
Maximum MW (Ionic): 991.80
Average MW (Ionic): 546.97
The minimum and maximum values for logKow are the following:
Training Set logKow:
Minimum LogKow (Non-Ionic): -1.37
Maximum LogKow (Non-Ionic): 11.26
Minimum LogKow (Ionic): -6.50
Maximum LogKow (Ionic): 7.86
d. Statistics for goodness-of-fit:
number in dataset = 527
correlation coef (r^2) = 0.833
standard deviation = 0.502
average deviation = 0.382
e. Predictivity – Statistics obtained by external validation:
number in dataset = 158
correlation coef (r2) = 0.82
standard deviation = 0.59
average deviation = 0.46
f. Mechanistic interpretation: The BCF is an inherent property used to describe the accumulation of a substance dissolved in water by an aquatic organism. The BCFBAF program estimates BCF of an organic compound using the compound's log octanol-water partition coefficient (Kow).
Measured BCFs and other experimental details were collected and analysed to derive subsets of data on non-ionic, ionic, aromatic and azo compounds, tin and mercury compounds. Because of the deviation from rectilinearity, different models were developed for different log Kow ranges, and a set of 12 correction factors and rules were introduced to improve the accuracy of the BCF predictions.
g. The uncertainty of the prediction (OECD principle 4): The rules applied for estimating the BCF of 2,7-napthalenedisulfonic acid, 5-amino-3-[[4-[2-[4-[(7-amino-1-hydroxy-3-sulfo-2-naphthalenyl)azo]-2-sulphenyl]ethenyl]-3-sulphophenyl]azo]-4-hydroxy-, lithium sodium salt, compound with 2,2'-(methylimino)bis[ethanol] appear appropriate. An individual uncertainty for the investigated substance is not available.
h. The chemical and biological mechanisms according to the model underpinning the predicted result (OECD principle 5): Not applicable.
i. Limits of applicability: Model predictions may be highly uncertain for chemicals that have estimated log KOW values > 9. The model is not recommended at this time for chemicals that appreciably ionize, for pigments and dyes, or for perfluorinated substances.
5. APPLICABILITY DOMAIN
a. Descriptor Domains:
i. log Kow: With a log Kow value of 2.77, the substance is within the range of the training set (Non-Ionics: -1.37 – 11.26/ Ionics: -6.50 – 7.86).
ii. Molecular weight: With a molecular weight of 950 g/mol the substance is within the range of the training set (Non-Ionics 68.08 – 959.17/ Ionics 102.13 – 991.80).
iii. Structural fragment domain: Not applicable as the BCF is not estimated on the basis of fragments.
iv. Mechanism domain: No information available
v. Metabolic domain: Not relevant
b. Structural analogues: Not relevant as the BCF is not estimated based on structural fragments.
6. ADEQUACY OF THE RESULT
a. Regulatory purpose: The data may be used for regulatory purpose.
b. Approach for regulatory interpretation of the model result: If no experimental data are available, the estimated value may be used to fill data gaps needed for hazard and risk assessment.
c. Outcome: The estimation of the bioconcentration factor (BCF) yields a useful result for further evaluation.
d. Conclusion: The result is considered as useful for regulatory purposes. - Guideline:
- other: REACH guidance on QSARs R.6, May 2008
- Principles of method if other than guideline:
- Calculated with BCF Program BCFBAF v.3.01 included in the Estimation Programs Interface (EPI)-Suite. The estimation methodology is based on the chemical structure of an organic compound and its log octanol-water partition coefficient (log Kow). Depending on chemical structure, structural correction factors are applied.
- GLP compliance:
- no
- Radiolabelling:
- no
- Test organisms (species):
- other: none, estimated by calculation
- Type:
- BCF
- Value:
- 3.162 L/kg
- Basis:
- other: calculation
- Validity criteria fulfilled:
- not applicable
- Conclusions:
- The bioaccumulation factor of the substace was estimated to be 3.162 L/kg (wet-wt) using the BCFBAF model included in the EPI-Suite Programm concluding that the substance has a low potential to bioaccumulate in biota. Within the scope of the Persistency-Bioaccumulation-Toxicity (PBT)-Assessment, the substance fulfills not the B-criterion.
- Executive summary:
The bioaccumulation factor of the substace was estimated to be 3.162 L/kg (wet-wt) using the BCFBAF model included in the EPI-Suite Programm concluding that the substance has a low potential to bioaccumulate in biota. Within the scope of the Persistency-Bioaccumulation-Toxicity (PBT)-Assessment, the substance fulfills not the B-criterion.
The substance falls within the applicability domain described above and, therefore, the predicted value can be considered reliable.
Referenceopen allclose all
Any decomposition of the substance in water is not considered by the program.
Validity of model:
- Defined endpoint: bioconcentration of a substance in biota
- Unambiguous algorithm: linear regression QSAR. Because of the deviation from rectilinearity, different models were developed for different log Kow ranges. Metals (tin and mercury), long chain alkyls and aromatic azo compounds are specially treated.
- Applicability domain: the model is applicable to ionic as well as non-ionic compounds. It is applicable to substances with a logKow in the following range: -6.50 to 7.86(ionic compounds) and -1.37 to 11.26 (non-ionic compounds). Applicable to substances with a molecular weight in the following range: 102.13 to 991.80 g/mole (ionic substances) and 68.08 and 959.17 g/mole (non-ionic compounds). ). Model predictions may be highly uncertain for chemicals that have estimated logKow values > 9. The model is not recommended at this time for chemicals that appreciably ionize, for pigments and dyes, or for perfluorinated substances.
- Statistical characteristics:
number in dataset = 527
correlation coef (r2) = 0.833
standard deviation = 0.502
- Mechanistic interpretation: The BCF is an inherent property used to describe the accumulation of a substance dissolved in water by an aquatic organism based on the lipophilicity of the compound.
Adequacy of prediction: 3,3'-[vinylenebis[(3-sulpho-p-phenylene)azo]]bis[5-amino-4-hydroxynaphthalene-2,7-disulphonic] acid, lithium sodium salt, compound with 2,2'-(methylimino)diethanol falls within the applicability domain described above and, therefore, the predicted value can be considered reliable taking into account that the standard deviation error of prediction of the external test set is 0.50 (logBCF). Considering that error, the predicted value is not above or close to the criterion to consider a substance as potential bioaccumulative.
Any decomposition of the substance in water is not considered by the program.
Validity of model:
- Defined endpoint: bioconcentration of a substance in biota
- Unambiguous algorithm: linear regression QSAR. Because of the deviation from rectilinearity, different models were developed for different log Kow ranges. Metals (tin and mercury), long chain alkyls and aromatic azo compounds are specially treated.
- Applicability domain: the model is applicable to ionic as well as non-ionic compounds. It is applicable to substances with a logKow in the following range: -6.50 to 7.86(ionic compounds) and -1.37 to 11.26 (non-ionic compounds). Applicable to substances with a molecular weight in the following range: 102.13 to 991.80 g/mole (ionic substances) and 68.08 and 959.17 g/mole (non-ionic compounds). ). Model predictions may be highly uncertain for chemicals that have estimated logKow values > 9. The model is not recommended at this time for chemicals that appreciably ionize, for pigments and dyes, or for perfluorinated substances.
- Statistical characteristics:
number in dataset = 527
correlation coef (r2) = 0.833
standard deviation = 0.502
- Mechanistic interpretation: The BCF is an inherent property used to describe the accumulation of a substance dissolved in water by an aquatic organism based on the lipophilicity of the compound.
Adequacy of prediction: 3,3'-[vinylenebis[(3-sulpho-p-phenylene)azo]]bis[6-amino-4-hydroxynaphthalene-2-sulphonic] acid, lithium sodium salt , compound with 2,2'-(methylimino)diethanol falls within the applicability domain described above and, therefore, the predicted value can be considered reliable taking into account that the standard deviation error of prediction of the external test set is 0.50 (logBCF). Considering that error, the predicted value is not above or close to the criterion to consider a substance as potential bioaccumulative.
Any decomposition of the substance in water is not considered by the program.
Validity of model:
- Defined endpoint: bioconcentration of a substance in biota
- Unambiguous algorithm: linear regression QSAR. Because of the deviation from rectilinearity, different models were developed for different log Kow ranges. Metals (tin and mercury), long chain alkyls and aromatic azo compounds are specially treated.
- Applicability domain: the model is applicable to ionic as well as non-ionic compounds. It is applicable to substances with a logKow in the following range: -6.50 to 7.86 (ionic compounds) and -1.37 to 11.26 (non-ionic compounds). Applicable to substances with a molecular weight in the following range: 102.13 to 991.80 g/mole (ionic substances) and 68.08 and 959.17 g/mole (non-ionic compounds). Model predictions may be highly uncertain for chemicals that have estimated logKow values > 9. The model is not recommended at this time for chemicals that appreciably ionize, for pigments and dyes, or for perfluorinated substances.
- Statistical characteristics:
number in dataset = 527
correlation coef (r2) = 0.833
standard deviation = 0.502
- Mechanistic interpretation: The BCF is an inherent property used to describe the accumulation of a substance dissolved in water by an aquatic organism based on the lipophilicity of the compound.
Adequacy of prediction: 2,7-Naphthalenedisulfonic acid, 5-amino-3-[[4-[2-[4-[(7-amino-1-hydroxy-3-sulfo-2-naphthalenyl)azo]-2-sulfophenyl]ethenyl]-3-sulfophenyl]azo]-4-hydroxy-, lithium sodium salt, compd. with 2,2'-(methylimino)bis[ethanol] falls within the applicability domain described above and, therefore, the predicted value can be considered reliable taking into account that the standard deviation error of prediction of the external test set is 0.50 (logBCF). Considering that error, the predicted value is not above or close to the criterion to consider a substance as potential bioaccumulative.
Description of key information
The BCF was estimated from QSAR calculations for the three main components of the substance and determined to be 3.162 L/kg.
Key value for chemical safety assessment
- BCF (aquatic species):
- 3.16 dimensionless
Additional information
The substance is handled and used as an aqueous solution with a water concentration of 58.8%. With an estimated log Kow range of 1.82 - 3.72 the substance can be assumed to be bioaccumulative. However, in order to support this assumption BCF was estimated for the three main components of the substance using a valid and reliable method.
The subsance consists of three main components that were used for the BCF estimation:
Component 1: CAS 83783-94-2; 3,3'-[vinylenebis[(3-sulpho-p-phenylene)azo]]bis[5-amino-4-hydroxynaphthalene-2,7-disulphonic] acid, lithium sodium salt, compound with 2,2'-(methylimino)diethanol: BCF = 3.162 L/kg
Component 2:CAS 83783-96-4; 2,7-Naphthalenedisulfonic acid, 5-amino-3-[[4-[2-[4-[(7-amino-1-hydroxy-3-sulfo-2-naphthalenyl)azo]-2 -sulfophenyl]ethenyl]-3-sulfophenyl]azo]-4-hydroxy-, lithium sodium salt, compd. with 2,2'-(methylimino)bis[ethanol]: BCF = 3.162 L/kg
Component 3: CAS 83783-95-3; 3,3'-[vinylenebis[(3-sulpho-p-phenylene)azo]]bis[6-amino-4-hydroxynaphthalene-2-sulphonic] acid, lithium sodium salt , compound with 2,2'-(methylimino)diethanol: BCF = 3.162 L/kg
The BCF was estimated from QSAR calculations for the three main components of the substance and determined to be 3.16. Therefore, the substance is not considered to be bioaccumulative and the BCF is also far below the criterion for bioaccumulative substances in the PBT/vPvB assessment of 2000. In conclusion, there is no study on bioaccumulative behaviour or the substance but reliable and valid QSAR estimations indicate that there is no concern. An additional study with vertebrates is not assumed to provide information that would significantly improve or even change the outcome of this assessment.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.