Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Physical & Chemical properties

Vapour pressure

Currently viewing:

Administrative data

Link to relevant study record(s)

Referenceopen allclose all

Endpoint:
vapour pressure
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
1. SOFTWARE
EPI Suite version 4.11

2. MODEL (incl. version number)
Mpbpwin v. 1.43

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"

5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Qualifier:
according to guideline
Guideline:
other: REACH Guidance on QSARs R.6
Principles of method if other than guideline:
- Software tool(s) used including version: EPI Suite v4.11
- Model(s) used: Mpbpwin Model version 1.43
The model estimates vapour pressure by three different methods:
- the Antoine equation (Lyman WJ, Reehl WF and Rosenblatt DH. 1990. Handbook of Chemical Property Estimation Methods. Washington, DC: American Chemical Society);
- the Modified Grain Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc., Chapter 2);
- the Mackay Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc.).
MPBPWIN selects a “suggested” vapour pressure: the modified Grain for solids and the average of the Antoine and the modified Grain for liquids and gases.
A dataset of 3037 compounds with experimentally determined vapour pressure values has been used to evaluate the model (using the “suggested” values as outcome), giving a correlation coefficient of 0.914. The evaluation clearly shows that the model reliability decrease for vapour pressure below 0.0001 Pa.
The dataset contains 1642 compounds with available experimental Boiling points and Melting points. The correlation coefficient evaluated on this subset (0.949) indicates that VP estimates are more accurate when experimental BP and MP are available.

- Model description: see field 'Justification for type of information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks'
GLP compliance:
no
Type of method:
other: QSAR
Temp.:
25 °C
Vapour pressure:
0.416 Pa
Remarks on result:
other: Modified Grain method

QSAR result; transition/decomposition is not specified/reported. For detailed description of the model and its applicability, see "Any other information on materials and methods incl. tables”

Endpoint:
vapour pressure
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
1. SOFTWARE
ARChem SPARC. version 4.6

2. MODEL
Properties - Vapor Pressure

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
Information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables".

5. APPLICABILITY DOMAIN
See information provided in "Any other information of materials and methods incl. tables".

6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section.
Qualifier:
according to guideline
Guideline:
other: REACH Guidance on QSARs R.6
Principles of method if other than guideline:
Calculation based on SPARC version v4.6, "Properties" calculation type

- Software tool(s) used including version: SPARC v4.6
- Model(s) used: Properties - Vapor Pressure (Pa)
The model utilizes a conventional LFER (Linear Free Energy Relationships), SAR (Structure Activity Relationships) and PMO (Perturbed Molecular Orbital) theory. For the complete method's description see field 'Any other information on materials and methods incl. tables'.
The datasets used for the model development (315 molecules) and for the external validation (747 molecules) are described in the field 'Any other information on materials and methods incl. tables'.
- Model description: see field 'Any other information on materials and methods incl. tables'.
- Justification of QSAR prediction: see field 'Justification for type of information' and 'overall remarks'.
GLP compliance:
no
Type of method:
other: QSAR
Key result
Temp.:
20 °C
Vapour pressure:
0.018 Pa

QSAR result; transition/decomposition is not specified/reported. For detailed description of the model and its applicability, see "Any other information on materials and methods incl. tables".

Description of key information

Vapour pressure < 0.5 Pa at 20 °C (QSAR: EPI Suite/Mpbpwin version 1.43, ARChem SPARC. version 4.6)

Key value for chemical safety assessment

Additional information

The vapour pressure of the test substance was estimated using two indipendent QSAR models. 0.0176 Pa (at 20 °C) and 0.416 Pa (at 25 °C) have been calculated by ARChem SPARC (v4.6) and EPI Suite/Mpbpwin (v1.43), respectively.

A vapour pressure < 0.5 Pa is taken as a conservative key value for the chemical safety assessment for this substance.